/)

STS Association

STS 101-2

Edition 1.6

Aug 2021

Standard Transfer Specification — Interface specification —
Physical layer protocol for a two-way virtual token carrier
for remote connection over DLMS/COSEM

Copyright © STS Association



-2- STS 101-2 Ed1.6 © STSA:2021

CONTENTS

FOREW O R D ...ttt e e e 5
INTRODUCTION Lottt ettt ettt et ettt e et et e et e et e e e e e e e e e ea e e et ereaenaans 6
1 S 0 0 01 7
2 N Lo T = ARV L= (= =T =T o = 7
3  Terms, definitions and abbreviationS...........cooi i 8
3.1 D Lo T 10} 0 8
3.2 A D BV AL ONS e e 8
3.3 NUMDBDEING CONVENTIONS ... ettt eenes 8
3.4 NAMING CONVENTIONS ... ettt ettt eenes 9

O - To [ V1] =] 141 1 TP 9
4.1 (D X0 a0 F= T e =T 01 4] (1T 9
4.2 MeESSAQE INtEICNANGE ... .o s 10
4.3 TokenGateway DEhaVIOUN ... 12
POSToTokenCarrierinterface : Physical Layer Protocol ..........cccooiiiiiiiiiiiiininnnenen 12

L T 1 1= 2 L= U = 13
6.1 LT =T 1T - 13
6.2 GET_request (POS t0 MELEI) ... 13
6.3 GET_response (Meter t0 POS) ... e e e 13
6.4 ACTION_request (POS t0 MeTEI) . c.ue i e e e eaaees 16
6.5 ACTION_response (Meter t0 POS) ...viviii e 17
6.6 DLMS/COSEM Class 0 .. uuiiieiiie i e e e e e enens 17
6.7 OBIS 1deNntifiCatioN .. .. e e 17
6.8 DefiNitiVeldentifier. ... 17

7 MeSSage — ASN. L FOImMaAt .. ..ot e e 18
7.1 L= = = | 18
7.2 D= L= I =3 1= 4 1= o (P 18
7.2.1 MessageBlock data elements . .....c.oviiiiii i 18
7.2.2 LI 1= 1= L= 157/ o = 19
7.2.3 T2 L= o o o 19
7.2.4 L R A 12 L= o] o] o 19
7.2.5 LI e (= 1 - - 20
7.2.6 AUthenticatioNRESUIL ... ..o 20
7.2.7 ValidatioNRESUIL. ... 20
7.2.8 TOKENRESUIL ... e e 20

7.3 Message AefiNitioNS ... ..o e 21
7.3.1 LT =Y = - | P 21
7.3.2 REQUESTIMESS AR .. e ettt e e 21
7.3.3 RequUEStMESSAgE SCREMA ... i 21

7.4 RESPONSEM S S AR .. ettt e 22
7.4.1 ResSpoNsSeMesSage SCheMa. ... ..ot 22
7.4.2 DLMS/COSEM tOKEN _StatUS.....iuiieiiiii it e e e aeeas 23
Annex A (informative) Worked eXamples ... 26
A.l 0 T LT3 0 o 26

A.2 Worked example — REQUESIMESSAGE .....vuiuiiiiiii e 26



STS 101-2 Ed1.6 © STSA:2021- 3 —

A.2.1 REQUESTMEBSSATE ...ttt e e e et 26
A.2.2 Values for RequestMessage worked example ..., 26
A.2.3 (070 ] 11 (= o | B I PRI 27
A.2.4 A-XDR €NCOUEU MESSATE ... ettt ettt 27
A.2.5 DLMS/COSEM encoded MESSAgE .. ...ouiuitiiititiiieee e 28
A.3 Worked example — ReSPONSEMESSATE ... .uiiii it 29
A.3.1 DaAtAV AIUE ... e 29
A.3.2 Test values for DataValue..........oiiiiiii e 29
A.3.3 A-XDR encoded DataValue ... ..o 29
A.3.4 DLMS/COSEM encoded ReSPONSEMESSAJE ...ouiviuiiiiiiiiiiieeee e 29
B OGP Y e s 31
Figure 1 — Domain entities and aSSOCIAtIONS .. .....ouieiiiei e 10
Figure 2 — Message interchange for STS_COS_TC interface — enter(data) method
LT 10 ST PPN 11
Figure 3 — Message interchange for STS_COS_TC interface — get token description........... 11
Table 1 — Domain entity SPeCIfiCatiONS .......iuiuii e 10
Table 2 — Message interchange specifiCations ..........coooiiiiiiii i, 12
Table 3 — ASCII/Hex encoding for token classes 0, 1 and 2 ......cooevviiiiiiiiiiiiiiciieeeeee 14
Table 4 — ASCII/Hex encoding for token class 0 and sub-classes—0 - 7........cccccvvviiiivinnnn.n. 14
Table 5 — ASCII/Hex encoding for token class 1 and sub-classes—0-1..........cccoovvvvivninnnnnn. 14
Table 6 — ASCII/Hex encoding for token class 2 and sub-classes—0-9...........ccoeevviiinnnnn. 14
Table—7 - OBIS [dentifiCation ... ..o e 17
Table 8 — MessageBlock data elementS .......c.oiiiiiii i 18
QLI: o] L=t R I 0] =Y g = L= 1Y/ o 1= 19
Table —0 - IDRECOIT FESUIL ... ettt es 19
Table —1 - AuthenticationResuUlt ValUES ... ..o 20
Table —2 - ValidationResUlt ValUES ... ... 20
Table 13 TOKENRESUIL VAIUES ... .. e 20
Table 14 — RequestMessage field definitions ... 21
Table 15 — DLMS/COSEM token_status result.........ccooiiiiiiiiiii e 24
Table 16 — ReqUESIMESSAQE GaAta ...ouvuirii i et aeeees 26
Table 17 — MessageBIlock CONteNt ... e 27
Table 18 — General structure of encoded MESSAQE......cviiiiiii it 27
Table 19 — A-XDR encoded ReqUESIMESSATE .....ouiiiriiiie i et eees 28
Table 20 — DLMS/COSEM encoded ReqUESIMESSAQJE .....ouiviniiiiiiiiiieieiieie e 28
Table 21 — Items of the DLMS/COSEM encoded RequestMesSage ........coovvvviiiiiiiinnnnnnn. 28
Table 22 — A-XDR DataValUe . ... 29
Table 23 — DLMS/COSEM encoded ReSpONSEMESSAQE ... ...vuiuiiiiiiiiiiieieieiee e 30

Table 24 — DLMS/COSEM encoded ResponseMessage itemsS .......ccovviiiiiiiiiiiiiiiiiiieeenn, 30



Revision History

STS 101-2 Ed1.6 © STSA:2021

Edition Clause Date Change details
1.1 general March 2015 Various editorial changes made
1.2 Table 1 April 2015 Changed STS_COS_TC reference in Table 1
1.2 Normative April 2015 Added STS 202-3 reference
references
1.3 Table 11 May 2016 Changed token enumerated value 3 “o "Token
Accep”ed". Changed to new Logo.
1.4 General technical Nov 2016 Added note to 7.4.2 to indicate format failure
changes conditions.
Table —1 - changed bullet 4 and 8 descriptions.
7.2-1 - Added definition for tokendatatype = 0.
Updated document as per comments received
during CDV stage.
1.5 technical January 2021 Added note to Table 4
Added bit-string values in Tables 6-9
Corrected example in A.3
Added Note2 to 7.2.7, and Notel to 7.2
technical Added text 7.4.2 to indicate that processing is
to stop after detection of the first token failure.
technical Changed all occurrences of ‘DLMS Blue Book’
to ‘IEC62056-6-2’.
3.4 Added clause on naming conventions
4.2 Added Figure 3
4.3 Added cluse on Token behaviour
6.1, 6.2 Added clauses for token description request,
renumbered subsequent clauses
6.1.1 Added sub-clause explaining the processing
sequence
6.2.1 Added clause on Use of TokenDescription
Attribute
general March 2021 Editorial polishing to STS template styles and
alignment of element names with IEC 62055-41
and IEC 62056-6-2
1.5 May 2021 Published
1.6 Table10, and 7.4.1 | Aug 2021 Removed references to TokenCarrierType and

Table 23, 24

IDRecordExpired in the IDRecord
Table 23 and 24 corrected.




STS 101-2 Ed1.6 © STSA:2021-5 —

1

2)

3)

5)

6)
7)

8)

9)

STANDARD TRANSFER SPECIFICATION ASSOCIATION

STANDARD TRANSFER SPECIFICATION -

Interface specification — Physical layer protocol for a two-way virtual
token carrier for remote connection over DLMS/COSEM

FOREWORD

The Standard Transfer Specification Association (STSA) is a worldwide organization for standardization
comprising all members of STSA. The object of STSA is to develop, maintain and promote international use of
the Standard Transfer Specification (STS). To this end and in addition to other activities, STSA publishes
Standards, Technical Specifications, Technical Reports, Codes of Practice and Guides (hereafter referred to as
“STSA Publication(s)”). Their preparation is entrusted to technical working groups; any STSA member
interested in the subject dealt with may participate in this preparatory work. STSA collaborates closely with the
International Electrotechnical Commission (IEC) in accordance with conditions determined by agreement
between the two organizations. As such STSA performs the role of Registration Authority of IEC 62055-41,
IEC 62055-51 and IEC 62055-52 on behalf of IEC.

The formal decisions or agreements of STSA on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each working group has representation from
all interested STSA members.

STSA Publications have the form of recommendations for international use and are accepted by STSA Board of
Directors in that sense. While all reasonable efforts are made to ensure that the technical content of STSA
Publications is accurate, STSA cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

STSA provides attestation of conformity. Independent testing bodies provide conformity assessment services
and recommendations to STSA Board of Directors who provides conformance certificates and access to STSA
marks of conformity.

All users should ensure that they have the latest edition of this publication.

No liability shall attach to STSA or its directors, employees, servants or agents including individual experts and
members of its technical working groups for any personal injury, property damage or other damage of any
nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the
publication, use of, or reliance upon, this STSA Publication or any other STSA Publications.

Attention is drawn to the normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

Attention is drawn to the possibility that some of the elements of this STSA Publication may be the subject of
patent rights. STSA shall not be held responsible for identifying any or all such patent rights.

Standard Transfer Specification STS 101-2 has been prepared by working group 8.

The text of this standard is based on the following documents:

Cbv Report on voting

STS 101-2 /CDV 21/06/2021

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with STSA Directive STS 2100-1.



-6- STS 101-2 Ed1.6 © STSA:2021

INTRODUCTION

The Standard Transfer Specification (STS) is a secure message protocol that allows
information to be carried between point of sale (POS) equipment and payment meters and it
caters for several message types such as credit, configuration control, display and test
instructions.

There is an emerging need in the global marketplace to harmonize existing standards in
general and STS in particular in order to meet the developing Smart Meter and Smart Grid
requirements.

IEC 62055-51 presently covers token carriers that require manual entry at the end device
such as a prepayment meter.

DLMS/COSEM is a widely accepted protocol standard being used by smart metering devices,
enabling bi-directional communication between a head end system client and an end device
server. Included in the COSEM suite are classes such as Account, Credit, Charge,
TokenGateway, Tariff, Calendar and Switch, which are especially suited for payment metering
functions.

The TokenCarrier is the physical medium used to transport information from a POS or the
management system to the payment meter, or from the payment meter to the POS or
management system. This document specifies a virtual token carrier as embodied in a remote
connection between a management device client and a payment meter server.

This document specifies a new TokenCarrier that allows for the transportation of STS tokens
over a DLMS/COSEM channel, while simultaneously supporting the existing token carriers
such as defined in IEC 62055-51 and IEC 62055-52.

The STS message is an ASN.1 message encoded using the A-XDR encoding rules, and is
contained within the DLMS/COSEM message block as a variable length Octet string.



STS 101-2 Ed1.6 © STSA:2021- 7 —

STANDARD TRANSFER SPECIFICATION -

Interface specification — Physical layer protocol for a two-way virtual
token carrier for remote connection over DLMS/COSEM

1 Scope

This document specifies the requirements for a new TokenCarrierType (STS_COSEM_TC) for
the transfer of tokens using standard DLMS/COSEM client/server protocols and a selection of
COSEM interface classes.

The normative part of this specification is limited to the translation from the STS application
layer protocol into the DLMS/COSEM client application layer protocol and does not concern
itself with details of lower layers of the communication protocol stack, which is the subject of
other standards.

Use cases and domain objects are presented as informative only to illustrate how the
STS_COSEM_TC can be used in a practical implementation. It also serves as a reference
model to test behaviour of the TokenCarrier.

This document specifies the format of the TokenCarrier to be produced by a POS (client) or
consumed by an STS-compliant payment meter (Server) in an integrated STS-COSEM
system, typically over a remote connection. It is complementary to the application layer
protocol specified in IEC 62055-41 and should be used in conjunction with that standard.

It is intended for use across a range of payment meters developed by different manufacturers
and to ensure compatibility between these products and other client devices.

A utility should be able to request STS-COSEM integration by including this document by
reference in their Companion Specification, and specifying the concrete TokenGateway
InstancelD required on their meters.

Unlike other STS token carriers this document specifies a two-way carrier:

e There is a path from the POS to the Meter

e There is a return path from the Meter to the POS, to convey the result of processing.

The main design objective in establishing the protocol has been the requirement to integrate
the transfer of data to and from an STS compliant payment meter using the existing
DLMS/COSEM protocol, which is today widely used in the Smart Meter market. The protocol
specified in this document makes use of the DLMS/COSEM protocol, and specifies a data
format for inclusion of an STS payload within this DLMS/COSEM protocol.

2 Normative references

IEC 62055-41 Ed3, ELECTRICITY METERING — PAYMENT SYSTEMS - Part 41: Standard
transfer specification (STS) — Application layer protocol for one-way token carrier systems

IEC 62056-5-3 Ed 3.0, ELECTRICITY METERING DATA EXCHANGE — THE DLMS/COSEM SUITE —
Part 5-3: DLMS/COSEM Application layer

IEC 62056-6-2 Ed 3.0, Electricity Metering Data Exchange — The DLMS/COSEM Suite — Part
6-2: COSEM Interface classes



-8- STS 101-2 Ed1.6 © STSA:2021

IEC 62056-6-1Ed 3, Electricity Metering Data Exchange — The DLMS/COSEM suite — Part 6 -
1: COSEM Object Identification System (OBIS)

IEC 61334-6 Ed 1:2000, Distribution automation using distribution line carrier systems — Part
6: A-XDR encoding rule

ITUT —TREC X690 2008-11, Information technology — Abstract Syntax Notation One (ASN.1):
Specification of basic notation

3 Terms, definitions and abbreviations

3.1 Definitions

For the purposes of this standard, the definitions and terms given in IEC 62055-41 shall
apply.

3.2 Abbreviations

ASN1 Abstract Syntax Notation One

A-XDR Adapted External Data Representation
BER Basic Encoding Rules of ASN.1

COSEM Companion Specification for Energy Measurement
DKGA DecoderKeyGenerationAlgorithm

DLMS Device Language Message Specification
EA EncryptionAlgorithm

IEC International Electrotechnical Commission
KRN KeyRevisionNumber

SGC SupplyGroupCode

STS Standard Transfer Specification

TCT TokenCarrierType

TDT TokenDataType

TI Tariffindex

TID Tokenldentifier

uc Use Case

VTC VirtualTokenCarrier

3.3 Numbering conventions

In this International Standard the representation of numbers in binary strings uses the
convention that the least significant bit is to the right, and the most significant bit is to the left.

Numbering of bit positions start with bit position 0, which corresponds to the least significant
bit of a binary number.

Numbers are generally in decimal format, unless otherwise indicated. Any digit without an
indicator signifies decimal format.

Binary digit values range from 0-1.

Decimal digit values range from 0-9.



STS 101-2 Ed1.6 © STSA:2021- 9 —

Hexadecimal digit values range from 0-9, A-F and are indicated by “hex” or by a preceding
“0x”.

3.4 Naming conventions

The words “token”, “tokendata”, and “data” have meanings in STS standards that are distinct
from their use in DLMS standards. In this specification these words may refer to an STS token
as specified in the STS standard (IEC 62055-41) or a data input to a TokenGateway as
specified in IEC 62056-6-2, depending on context:

e From a DLMS TokenGateway perspective a “token” is the “data” input to the “enter”
method, which is conveyed as an opaque field within a DLMS/COSEM ASN.1-encoded
message;

e From an STS101-2 perspective the “data” input to the “enter” method is an ASN.1-
encoded RequestMessage (see 7.3.3);

e A DLMS/COSEM “token” is thus synonymous with an STS101-2 “RequestMessage”,
and distinct from an STS 20-digit numeric token carrier or the 66-bit TokenData in the
TCDU as defined in IEC 62055-41;

e Similarly the “token_status” structure returned by the enter() method is defined in IEC
62056-6-2. The word “token” in the context of the status code field must be
understood as pertaining to the DLMS/COSEM token. The data_value bit-string is an
ASN.1-encoded “DataValue” (see 7.4.1).

4 Requirements

4.1 Domain entities

The reference diagram shown in Figure 1 is a simplified function class diagram extracted from
IEC 62056-5-3 and IEC 62056-6-2 (shown in green) in association with relevant STS entities
extracted from IEC 62055-41 (shown in yellow).

Information flow is between the Head-endSystemApplicationProcess (HES_AP) and the
EndDeviceApplicationProcess (ED_AP).



-10 - STS 101-2 Ed1.6 © STSA:2021
class Domain entities )
HES_AP
101 1
0.1 0.1
DLMS_CL_AL STS_VEND_AL
01 0.1 0.1 01| 8.5
STS_COS_TC STS_ED_PL
0.1 0.*
0.* 0.1 0.*
DLMS_SVR_AL STS_ED_AL
11 0.1
0.* 0.* 0.1
COSEM_ACCOUNT COSEM_TKN_GW STS_TKN_GW
1 1 0.*
1.% 1 1
1
QOSEM_CREDIT 1 ED_AP 07| STS_CREDIT
1.*
COSEM_CHARGE

Figure 1 — Domain entities and associations

The specifications for the classes are given in Table 1.

Table 1 - Domain entity specifications

Entity Context Specification
COSEM_ACCOUNT COSEM Account interface class IEC 62056-6-2
COSEM_CHARGE COSEM Charge interface class IEC 62056-6-2
COSEM_CREDIT COSEM Credit interface class IEC 62056-6-2
COSEM_TKN_GW COSEM TokenGateway interface class IEC 62056-6-2
DLMS_CL_AL DLMS client application layer IEC 62056-5-3
DLMS_SVR_AL DLMS server application layer IEC 62056-5-3

ED_AP End device application process Application-specific
HES_AP Head-end system application process Application-specific
STS_COS_TC STS/DLMS/COSEM TokenCarrier STS101-2
STS_CREDIT STS credit register IEC 62055-41
STS_ED_AL STS end device application layer IEC 62055-41
STS_ED_PL STS end device physical layer IEC 62055-41
STS_TKN_GW COSEM STS TokenGateway IEC 62056-6-2
STS_VEND_AL STS vending system application layer IEC 62055-41

4.2 Message interchange

Figure 2 and Figure 3 show reference use case sequence diagrams, from which the
STS_COS_TC interface specification is derived.



STS 101-2 Ed1.6 © STSA:2021- 11 —

sd Message interchange )

HES_AP STS_VEND_AL | |STs_cos_Tc DLMS_SVR_AL STS_TKN_GW STS_ED_AL ED_AP

T T T
| | |
!
|

B

I

APDU(Token+ ! ;
L TCDU(TokenData+) | TokenLockout t

——® | be catered for

U I

I

I

I

T
!
!
1

I
SParm(STS_TKN_GW)
T I

ACTION_request(SParm, TokenData+)
|

enter(data)

T
!
!
!
|
!
!
!
!
|
!
!
!
!
!
!
!

TCDU(TokenData+)
[ I
TCDU(AuthenticationResult) - !
APDU(AuthenticationResult)

TCDU(ValidationResult) ;
APDU(ValidationResult) |

execute
token()

APDU(TokenResult)
TCDU(TokenResult) d
N il

[l
|
|
!
|
|

action_result(token_status)
-

ACTION_response(Data)

T
token_status() jJ— |
|

I I

|

|
I
|
|
I
|
I
|
|
I
|
I
|
|
I T
| APDU(Token+) |
I
|
|
I
|
I
|
|
I
i
|
I

=
A

Figure 2 — Message interchange for STS_COS_TC interface — enter(data) method
request

STS_COS_TC DLMS_SVR_AL STS_TKN_GW.

T
1

T

I

I

I

| TokenLockout to
: be catered for
I

I

I

I

I

I

Get_token_description()

GET_request(attribute)

I
I
|
I
I
|

get(attribute) 1

1

actjon_result(token description)|
-+
GET_response(token description)
token description jJ<

]

-
|
|

————
=

Figure 3 — Message interchange for STS_COS_TC interface — get token description

The message specifications are given in Table 2.



-12 - STS 101-2 Ed1.6 © STSA:2021

Table 2 — Message interchange specifications

Entity Context Specification
APDU(Token+) ApplicationProtocolDataUnit containing the token IEC 62055-41
plus other data elements clause 6.1
IEC 62055-41
clause 7.1
TCDU(TokenData) TokenCarrierDataUnit containing the 66 bit token IEC 62055-41
data clause 6.4
TCDU(AuthenticationResult) TokenCarrierDataUnit containing the result from IEC 62055-41
authentication check clause 7.2
TCDU(ValidationResult) TokenCarrierDataUnit containing the result from IEC 62055-41
validation check clause 7.2
TCDU(TokenResult) TokenCarrierDataUnit containing the result from IEC 62055-41
token execution clause 7.2
Sparm(STS_TKN_GW) Service parameters for the DLMS/COSEM IEC 62056-6-1
TokenGateway interface class
IEC 62055-41
clause 6.8
ACTION_request(Spar, TokenData) DLMS message construct from DLMS/COSEM Client | IEC 62056-5-3
to Server containing Spar plus TokenData clause 6.8
ACTION_response(token_status) DLMS message construct from DLMS/COSEM IEC 62056-6-2
Server to Client containing token_status as returned
from COSEM TokenGateway interface class IEC 62056-5-3
clause 6.8
enter(data) Specific method to be used for COSEM IEC 62056-6-2
TokenGateway to load the TokenData contained in
data
return(action_result) COSEM TokenGateway returns the result from the IEC 62056-6-2
enter method
token_status() Compound data construct as returned from COSEM IEC 62056-6-2

TokenGateway interface class

Note: Server firmware processes start at DLMS_SRV_AL in Figure 2.
4.3 TokenGateway behaviour

STS_TKN_GW is an instance of the DLMS/COSEM ‘Token gateway’ interface class for which
behaviour of the enter() method is defined by this standard (STS101-2). Specifically the
enter() method:

1) Receives ‘data’ which it parses as an ASN.1-encoded RequestMessage;

2) Extracts STS tokens from the RequestMessage and submits them in order to the STS
Application Layer (STS_ED_AL), stopping if a token is rejected;

3) Formats the result from the STS Application Layer into an ASN.1-encoded DataValue;
4) Returns the ‘token_status’ structure which includes the DataValue (as the ‘data_value’
field).

Further detail is given in 6.4

5 POSToTokenCarrierinterface : Physical Layer Protocol

In practice the token is entered into the payment meter by means of, for example, a keypad. A
client device could also be a mobile HHU that connects to the payment meter by means of a
direct local connection, but it is also possible for the connection to be extended to a remote
management system by means of suitable interposing modem devices linked over any
appropriate communications medium.



STS 101-2 Ed1.6 © STSA:2021- 13 —

The connection is not within the scope of this specification. However, the format for the data
in such extended remote connection is specifically covered in this standard. Additional
information on bit-string A-XDR encoding may be found in DLMS UA 1001-2.

6 TokenCarrier

6.1 General

The TokenCarrier is a message in ASN.1 format in compliance with ITUT —-TREC X690 2008-
11 encoded with A-XDR encoding rules as per IEC61334-6.

The POS shall send the token(s) to the meter by encoding them into the TokenCarrier as
described in this standard, then invoking methodld=1 (enter) on the STS TokenGateway.

The TokenCarrier should have forward compatibility (a meter or POS implementation
conforming to this standard should be able to at least recognise - and possibly accept - future
versions of the TokenCarrier) and backwards compatibility (implementations conforming to a
future version of this standard should be able to recognise and accept previous versions of
the TokenCarrier).

One approach to achieve such compatibility is to add to each message (request, response) at
least one field that is Reserved for Future Use (RFU).

There are several possibilities for the TokenCarrier as outlined in the following clauses.

6.2 GET_request (POS to Meter)

The GET_request to extract the STS token description is according to IEC 62056-6-2 for the
COSEM TokenGateway class.

6.3 GET_response (Meter to POS)

The GET_response to extract the STS token description is according to IEC 62056-6-2 for the
COSEM TokenGateway class.

The token_description attribute is specified as an array of octet-string type
token_description_elements that contain a description of the most recently processed token.
In the STS context, the token_description attribute shall comprise of the following
token_description_elements:

token_description :: = {
sts_token_class: octet-string,
sts_token_subclass: octet-string,
sts_token_id: octet-string,

sts_token_amount: octet-string,

Where:

e sts_token_class and sts_token_subclass represent the STS token classes and sub-
classes as given in tables 14 and 15 in IEC 62055-41 and are formatted as the
hexadecimal equivalent of ASCII characters as shown in Table 3, Table 4, Table 5 and
Table 6.



— 14 -

Table 3 — ASCIl/Hex encoding for token classes 0, 1 and 2

Token ASCII sts_token_class representation (Hexadecimal equivalent)
Class representation
CREDIT 435245444954205452414E53464552
TRANSFER
NON METER 4E4F4E204D45544552205350454349464943204D414E4147454D454E54
SPECIFIC
MANAGEMENT
METER SPECIFIC 4D45544552205350454349464943204D414E4147454D454E54
MANAGEMENT
Table 4 — ASCIlI/Hex encoding for token class 0 and sub-classes 0 -7
Class 0
Token ASCII sts_token_subclass representation (Hexadecimal equivalent)
SubClass representation
0 ELECTRICITY 454C454354524943495459
1 WATER 5741544552
2 GAS 474153
3 TIME 54494D45
4 ELECTRICITY 454C45435452494349542043555252454E4359
CURRENCY
5 WATER 57415445522043555252454E4359
CURRENCY
6 GAS CURRENCY 4741532043555252454E4359
7 TIME CURRENCY 54494D452043555252454E4359
Table 5 — ASCIllI/Hex encoding for token class 1 and sub-classes 0 - 1
Class 1
Token ASCII sts_token_subclass representation (Hexadecimal equivalent)
SubClass representation
0 INITIATE METER 494E495449415445204D4554455220544553542032444754
TEST 2DGT
1 INITIATE METER 494E495449415445204D4554455220544553542034444754
TEST 4DGT
Table 6 — ASCIl/Hex encoding for token class 2 and sub-classes 0 - 9
Class 2
Token ASCII sts_token_subclass representation (Hexadecimal equivalent)
SubClass representation
0 SET MAXIMUM 534554204D4158494D554D20504F574552204C494D4954
POWER LIMIT
1 CLEAR CREDIT 434C45415220435245444954
2 -
3 SET 1ST 53455420315354204445434F444552204B4559
DECODER KEY
4 SET 2ND 53455420324E44204445434F444552204B4559

DECODER KEY

STS 101-2 Ed1.6 © STSA:2021




STS 101-2 Ed1.6 © STSA:2021- 15 —

5 CLEAR TAMPER 434CA4541522054414D50455220434F4E444954494F4E
CONDITION

6 SET MAX POWER 534554204D415820504F57455220504841534520504F57455220554E42
PHASE POWER 414C414E434544204C494D4954
UNBALANCED
LIMIT

7

8 SET 3RD 53455420335244204445434F444552204B4559
DECODER KEY

9 SET 4TH 53455420345448204445434F444552204B4559
DECODER KEY

e sts token_id represents the Tokenldentifier as specified in 6.3.5 of IEC 62055-41 and
formatted as hexadecimal. Where the Tokenldentifier is not applicable to a particular
sts_token_subclass then its value shall be null-data as defined in IEC 62056-6-2.

e sts_token_amount represents the value of the Amount field carried in class 0 tokens as
specified in 6.2.2 of IEC 62055-41 after it has been processed and formatted into data
type of the current_credit_amount attribute of the Credit interface class specified in
IEC 62056-6-2. The processed value is formatted as the hexadecimal equivalent of
ASCIl characters. Where the Amount field is not applicable to a particular
sts_token_subclass then its value shall be null-data as defined in IEC 62056-6-2.

Example 1 - Class 0 tokens
Amount: 10.00 kWh

TID: 120,355
token_description :: = {
435245444954205452414E53464552,
454C454354524943495459,
01D623,

31302E3030

Example 2 — Class 1 tokens

Representation of token_description for 2-digit manufacture code test token.
token_description :: = {
4EAFAE204D45544552205350454349464943204D414E4147454D454E54,
494E495449415445204D4554455220544553542032444754,
null-data,

null-data



- 16 - STS 101-2 Ed1.6 © STSA:2021

Example 3 — Class 2 tokens

Representation of token_description for SetlstSectionDecoderKey token..

6.4

token_description :: = {
4D45544552205350454349464943204D414E4147454DA54E54,
53455420315354204445434F444552204B4559,
null-data,
null-data

}

ACTION_request (POS to Meter)

The request must have the following fields (derived from IEC 62055-41 APDU/TCDU):

TokenDataType, an integer in the range (0-99);

IDRecord, an optional, printable string of 35 digits;
PRNRecord, an optional, printable string of variable length;
One or more Tokens (Octet String) in binary or Hex.

This standard requires that the enter() method shall have behaviour equivalent to the
following:
1) Initialise all fields of DataValue to zero (i.e. no bits set). Whenever this enter() method

2)

3)

4)

5)

returns, this DataValue is ASN.1-encoded to create the token_status.data_value field;

Parse “data” as an ASN.1 RequestMessage. If the data cannot be decoded or
understood successfully then: return with status_code = 4 (Token data type failure)
and current data_value;

If RequestMessage.idrecord is present then: check the “idrecord” and set
DataValue.idRecord (type IDRecordResult). Do not return, even if the IDRecord is not
OK;

Check the RequestMessage.tokendatatype; if not supported by this STS_TKN_GW
implementation, or the corresponding token data is missing or not well-formed (e.g.
tokendatatype = 0 but the RequestMessage.tokens sequence is empty) then: set
DataValue.token (type TokenResult) bit 10 (invalidTokenDataType), and return with
status_code = 7 (Token Execution Result Failure) and current data_value;

Iterate over the RequestMessage.tokens sequence in order, doing the following for
each token:

a) Set the bit in DataValue.tkf (type TokenFailure) that corresponds to this token
(i.e. set bit ‘token1Failure(0)’ for the first token, or bit ‘token2Failure(1)’ for the
second token, etc.);

b) Pass the token to STS_ED_AL which should (according to IEC 62055-41)
produce an AuthenticationResult, a ValidationResult, and a TokenResult;

c) If STS_ED_AL reports an AuthenticationResult other than “Authentic” then: set
DataValue.auth to reflect the AuthenticationResult, and return with status_code
= 5 (Authentication failure) and current data_value;

d) If STS_ED_AL reports a ValidationResult other than “Valid” then: set
DataValue.val to reflect the ValidationResult, and return with status_code = 6
(Validation result failure) and current data_value;



STS 101-2 Ed1.6 © STSA:2021- 17 —

e) If STS_ED_AL reports a TokenResult that is neither “Accept” nor provisionally
accepted (1stKCT, 2ndKCT, 3rdKCT, 4thKCT) then: set DataValue.token (type
TokenResult) to reflect the TokenResult, and return with status_code = 7
(Token execution result failure) and current data_value;

f) Clear the bit in DataValue.tkf that corresponds to this token.
6) Return status_code = 3 (Token execution result OK) and current data_value.

Notes:

e Returning from within an iteration gives effect to the rule to stop at the first token that is
rejected (see 7.4.2);

e The status_code indicates which field(s) in DataValue must have meaningful values (see
Table 15); the semantics of other fields is not clearly defined (this implementation clears all
bits in other fields);

e |n spite of the above, DataValue.idrecord should have a meaningful value for any status_code
except 4 (Token data type failure);
o DataValue.tkf is optional but should be present if there are multiple elements in
RequestMessage.tokens and one of these tokens fails.
6.5 ACTION response (Meter to POS)

The response shall have the following fields (derived from [IEC 62055-41
MeterApplicationProcess):

e AuthenticationResult, a bit string of variable length;
e ValidationResult, a bit string of variable length;

e TokenResult, a bit string of variable length;

e |DRecordResult, a bit string of variable length;

6.6 DLMS/COSEM class_id

The class_id for the STS TokenGateway is defined as 115 (0x0073 Hex) in IEC 62056-6-2.

6.7 OBIS Identification

The OBIS ldentification parameters are made up as shown in Table 7.

Table 7 - OBIS Identification

Prepayment ) OBIS identification
: class_id
objects A B c b £ =
TokenGateway 115 (0x0073) 0 0 19 40...49 0 255

The Utility has the ability to select any of the token gateway OBIS codes in value group D in
the range 40 to 49. This value shall be defined in a Companion Specification generated and
maintained by the Utility.

6.8 Definitiveldentifier

The Definitiveldentifier is a unique number allocated to the STSA as a Private Enterprise
Number by the IANA (Internet Assigned Numbers Authority). The number allocated to the
STSA is 43924 and shall be used for all Request and Response messages in the



-18 - STS 101-2 Ed1.6 © STSA:2021

DLMS/COSEM protocol layer. Note that the Definitiveldentifier is not sent in the message, but
only specified in the message definition.

The ASN.1 message is defined in the STSA’s private namespace, STSForCosem

{
iso(1)
identified-organization(3)
dod(6)
internet(1)
private(4)
enterprise(1)
stsa(43924)
stsforCosem(1)

7 Message — ASN.1 Format

7.1 General

Although A-XDR is used as the encoding rule, the message is formulated using ASN.1
standards.

For a full definition of the ASN.1 BER standard, refer to ITUT —-TREC X680 2008-11.
Presented in the following clauses is a summary of the data elements used for data encoding.

7.2 Data elements
7.2.1 MessageBlock data elements

Table 8 shows the data elements of the message block for transfer to and from the payment
meter.

Table 8 — MessageBlock data elements

Element Format Range Carrier Ref
TokenDataType Integer 0-99 Request 7.2.2
IDRecord Printable string 35 alphanumeric | Request 7.2.3

ASCII digits
PRNRecord Printable string ASCII string of Request 7.2.4
variable length
TokenData OCTET STRING 66 bits Request 7.2.5
AuthenticationResult Bit string (notel) variable length Response 7.2.6
ValidationResult Bit string (notel) variable length Response 7.2.7
TokenResult Bit string (notel) variable length Response 7.2.8
IDRecordResult Bit string (notel) Variable length Response 7.2.3

Note :

In an ASN.1 BIT STRING with named bits, bit zero (0) is the leading bit [ITU X.680-0207]. For example in

'AuthenticationResult' the leading bit is 'authentic(0)'. A-XDR encoding of a BIT STRING (that does not have a
SIZE constraint) produces a Length field followed by a Content field; the leading bit of the BIT STRING is placed in
the left-most bit of the first octet of the Content field [see IEC 61334-6 DLMS UA 1001-2:2000]. For example A-
XDR encoding of 'AuthenticationResult' (3 bits) with 'authentic' set and all other bits cleared, will produce the octet
sequence { 0x03, 0x80 }. Additional information on bit-string A-XDR encoding may be found in DLMS UA 1001-2.



STS 101-2 Ed1.6 © STSA:2021- 19 —

7.2.2 TokenDataType

The TokenDataType indicates the data format of the transmitted token. This could be, for
example a 66 bit token, or a bulk token.

TokenDataType 0 has one or more 66 hit (9 octet) elements in 'tokens' and zero elements in
'longtokens’

The following TokenDataTypes are defined:

Table 9 - TokenDataType

TokenDataType Token length TokenDataType value
66 bit TokenData 66 bits 0
Reserved for future use unspecified 1-99

If the token data type is not recognised by the receiver, the error response “Invalid token data
type” must be returned (see 7.4.1).

7.2.3 |IDRecord

IEC 62055-41 defines the IDRecord as 35 digits. Transmission of the IDRecord is optional.
The POS should include the IDRecord unless it has access to meter configuration data that
selects to exclude the IDRecord.

The MeterApplicationProcess must check that IDRecord matches the meter configuration or
report a meter configuration mismatch.

This is a status indicator to the physical layer protocol to convey the result of the transmitted
IDRecord.

Table 10 - IDRecord result

Result Value (Hex) Bit Number Bit-string value

Meter Configuration OK 0x01 0 ‘10000000’ (0x80)
MeterPAN mismatch 0x02 1 ‘01000000’ (0x40)
not used (set to zero) 0x04 2 ‘00000000’ (0x00)
not used (set to zero) 0x08 3 ‘00000000’ (0x00)
EA mismatch 0x10 4 ‘00001000’ (0x08)
SGC mismatch 0x20 5 ‘00000100’ (0x04)
Tl mismatch 0x40 6 ‘00000010’ (0x02)
KRN mismatch 0x80 7 ‘00000001’ (Ox01)
Reserved for future use 0x100 — n 8-n

7.2.4 PRNRecord

Optional variable length print data intended to be printed at the same time as the coding of
the token onto the TokenCarrier, as defined in Tablel of IEC 62055-41




- 20 - STS 101-2 Ed1.6 © STSA:2021

7.2.5 TokenData

This is the 66-bit binary format of the token data as decoded from the TokenCarrier. It is the
same data element as is present in the TCDU at the POSToTokenCarrierinterface (see 6.4.2
to 6.4.4 of IEC 62055-41).

7.2.6 AuthenticationResult

This is a status indicator to the physical layer protocol to convey the result from the initial
authentication checks.

The format for AuthenticationResult is given in Table 11.

Table 11 - AuthenticationResult values

Result Value (Hex) Bit number Bit-string value Reference
Authentic 0x01 0 ‘10000000’ (0x80) IEC 62055-41 7.1.2
CRCError 0x02 1 ‘01000000’ (0x40) IEC 62055-41 7.1.2
MfrCodeError 0x04 2 ‘00100000’ (0x20) IEC 62055-41 7.1.2
Reserved for future use 0x08 — n 3-n

7.2.7 ValidationResult

This is a status indicator to the Physical Layer Protocol to convey the result from the initial

validation checks.

Table 12 - ValidationResult values

Result Value (Hex) Bit Number Bit-string value Reference
Valid 0x01 0 ‘10000000’ (0x80) IEC 62055-41 7.1.3
OIdError 0x02 1 ‘01000000’ (0x40) IEC 62055-41 7.1.3
UsedError 0x04 2 ‘00100000’ (0x20) IEC 62055-41 7.1.3
KeyExpiredError 0x08 3 ‘00010000’ (0x10) IEC 62055-41 7.1.3
DDTKError 0x10 4 ‘00001000’ (0x08) IEC 62055-41 7.1.3
Reserved for future use 0x20 — n 5-n

7.2.8 TokenResult

This is a status indicator from the MeterApplicationProcess to convey the result after
processing the Token so that the Physical Layer Protocol can take the appropriate action. See
also 7.1.4 of IEC 62055-41 of for definition of the TokenResult values.

Table 13 TokenResult values

Result Value (Hex) Bit Number Bit-string value Reference
Accept 0x01 0 ‘10000000000000000° IEC 62055-41 7.1.5
0x8000
1stKCT (Note2) 0x02 1 ‘0100000000000000° IEC 62055-41 7.1.5
(0x4000)
2ndKCT (Note2) 0x04 2 ‘0010000000000000° IEC 62055-41 7.1.5
(0x2000)




STS 101-2 Ed1.6 © STSA:2021- 21 —

3rdKCT (Note2) 0x08 3 ‘0001000000000000’ IEC 62055-41 7.1.5
(0x1000)

4thKCT (Note2) 0x10 4 ‘0000100000000000’ IEC 62055-41 7.1.5
(0x0800)

OverflowError 0x20 5 ‘0000010000000000’ IEC 62055-41 7.1.5
(0x0400)

KeyTypeError 0x40 6 ‘0000001000000000° IEC 62055-41 7.1.5
(0x0200)

FormatError 0x80 7 ‘0000000100000000’ IEC 62055-41 7.1.5
(0x0100)

RangeError 0x0100 8 ‘0000000010000000’ IEC 62055-41 7.1.5
(0x0080)

FunctionError 0x0200 9 ‘0000000001000000’ IEC 62055-41 7.1.5
(0x0040)

InvalidTokenDataType 0x0400 10 ‘0000000000100000’
0x0020

(Notel)

Reserved for future use 0x0800 — n 11-n

Note 1: an InvalidTokenDataType error will occur if the server does not support the token type sent. For example, if
the server does not support a bulk token (which has more than the normal 66 bits).

Note 2: in a key-change operation, each token in the set shall return the token number (1stKCT, 2ndKCT, 3rdKCT,
4thKCT, except the last token in the key-change operation which shall return ‘Accept’ if the set is accepted. As an
example: in a two key-change set, if the first token entered is KCT1, the server shall return ‘1stKCT’, and on
acceptance of the second token, the server shall return ‘Accept’, and not ‘2ndKCT’.

If the order of the tokens is the 2" KCT followed by the 15t KCT, then the server shall return
2ndKCT’ after acceptance of the first token, and ‘Accept’ after acceptance of the second
token. See also 8.2 of IEC 62055-41 for acceptance of tokens.

7.3 Message definitions
7.3.1 General

The various messages supported are given below.

7.3.2 RequestMessage

Each RequestMessage comprises the fields as shown in Table 14.

Table 14 — RequestMessage field definitions

Field Size/Value Type Optional (Yes/No)
TokenDataType 0-99 Integer No
IDRecord 35 Digits Printable String Yes
PRNRecord variable length Printable String Yes
TokenData 66 bits Octet Strings No

Note: the Token data bit string must be left padded with 6 zeros to make up a full set of octets.

7.3.3 RequestMessage schema

The TCDU is encoded into an ASN1 RequestMessage with A-XDR encoding.

StsForCosem {iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1)

stsa(43924) stsForCosem(1)} DEFINITIONS AUTOMATIC TAGS ::= BEGIN

RequestMessage ::= SEQUENCE

{

tokendatatype Integer (0..99),




- 22 - STS 101-2 Ed1.6 © STSA:2021

idrecord PrintableString (SIZE(35)) OPTIONAL,
prnrecord PrintableString, OPTIONAL,
tokens SEQUENCE OF OCTET STRING(Size(9)),

longtokens SEQUENCE OF OCTET STRING OPTIONAL

END

These data fields make up the Contents portion of the ASN1 defined message as shown in
the worked example in Annex A.2.

7.4 ResponseMessage
7.4.1 ResponseMessage schema

The TCDU shall be encoded into an ASN1 response message with A-XDR encoding in
accordance with 5.4 and Clause 7 of IEC 62055-41.

The token status response is defined in 7.4.2 as follows:

token_status ::= structure
{
status_code: enum
data_value: bit-string (refers to the DataValue)

Where the status_code is an enumerated value (see 7.4.2), and the data_value is constructed
by ASN.1 encoding DataValue to produce a bit-string.

StsForCosem {iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(l)
stsa(43924) stsForCosem(1)} DEFINITIONS AUTOMATIC TAGS ::= BEGIN

DataValue ::= SEQUENCE
{
auth AuthenticationResult,
val ValidationResult,
token TokenResult,
idRecord IDRecordResult, (set to valid if not included in RequestMessage)
tkf TokenFailure OPTIONAL

}
AuthenticationResult ::= BIT STRING

{
authentic (0),
crcError(1),
mfrCodeError(2)
-- other bits RFU

ValidationResult ::= BIT STRING
{
valid(0),
oldError(1),
usedError(2),
keyExpiredError(3),
dDTKError(4)
-- other bits RFU



STS 101-2 Ed1.6 © STSA:2021- 23 —

}
TokenResult ::= BIT STRING

{
accept(0),
kCT1(1),
kCT2(2),
kCT3(3),
kCT4(4),
overflowError(5),
keyTypeError(6),
formatError(7),
rangeError(8),
functionError(9),
invalidTokenDataType(10),
-- other bits RFU

}
IDRecordResult ::= BIT STRING

{
valid(0),
meterPanMismatch(1),
NotUsed?2(2) set to zero,
NotUsed3(3) set to zero,
eaMismatch(4),
sgcMismatch(5),
tiMismatch(6),
krnMismatch(7),
-- other bits RFU

}
TokenFailure ::= BIT STRING

{
tokenlFailure(0),

token2Failure(1),
token3Failure(2),
token4Failure(3),
-- other bits RFU

END

7.4.2 DLMS/COSEM token_status

The following structure is defined in IEC 62056-6-2 for the token status returned after a
RequestMessage:

token_status ::= structure

{

status_code: enum
data_value: bit-string (refers to the DataValue)

status_code::= enum

(0) Token format result OK
(1) Authentication result OK
(2) Validation result OK

(3) Token execution result OK

(4) Token data type failure (refers to the ASN1 message)



- 24 - STS 101-2 Ed1.6 © STSA:2021

(5) Authentication failure
(6) Validation result failure
(7) Token execution result failure

(8) Token Received but not yet processed

Table 15 shows the DLMS/COSEM token_status enumerated fields, together with the
matching IEC62055-41 token status conditions.

Table 15 — DLMS/COSEM token_status result

DLMS/COSEM enumerated value STS result
(0) Token format result OK Not used
(1) Authentication result OK Not used
(2) Validation result OK Not used
(3) Token execution result OK Token accepted
(4) Token data type failure Set if unsupported data type or invalid token data format -

returned if the DLMS/COSEM token (i.e. ASN.1-encoded
RequestMessage) cannot be decoded or understood
successfully

(5) Authentication failure Set if authentication fails — see AuthenticationResult bit-
string for result.

DataValue (type TokenFailure), if present, indicates which
token (from RequestMessage.tokens) failed

(6) Validation result failure Set if validation fails - see ValidationResult bitstring for
result.

DataValue (type TokenFailure), if present, indicates which
token (from RequestMessage.tokens) failed

(7) Token execution result failure Set if token processing fails — see TokenResult bit-string for
result.

DataValue (type TokenFailure), if present, indicates which
token (from RequestMessage.tokens) failed

(8) Token received but not yet Set if the server is not able to process the token type that it
processed has received (i.e. bulk token which is not the standard 66 bit
format)

Note that the values shown in the DLMS/COSEM enumerated values column are mutually
exclusive: only one value can be returned on a token status response message.

The value to be used in the response message will be the first failure that is encountered
during the processing of the token in the MeterApplicationLayer or MeterApplicationProcess.
Processing of tokens shall stop after detection of the first failure.

The enumerated values (0), (1), and (2) are redundant since if a token is decrypted correctly,
enumerated value (3) will be returned.

Enumerated value (4) format failure could be due to an unsupported data type, or an invalid
token data format.

If authentication, validation or execution failures occur, the failure result will be contained in
the corresponding bit-string value.



STS 101-2 Ed1.6 © STSA:2021- 25 —

Enumerated value (7) is set only if the error encountered is one of the failures specified in
7.4.1 in the TokenResult bit-string (bits 4,5,6,7, or 8).



- 26— STS 101-2 Ed1.6 © STSA:2021

Annex A
(informative)

Worked examples

A.1 Introduction

This annex shows worked examples of the messages described in this standard.

A.2 Worked example - RequestMessage

A.2.1 RequestMessage

For this example the data shown in Table 16 are used.

Table 16 — RequestMessage data

Element Description

TCT 23 (arbitrarily chosen)

ID Record 60072700000000000900000207123456011

PRNRecord “Test Message”

SGC 123456
TI 01
KRN 1
KEN FF
Transfer 0.1kWh
Amount
Issue
Date/Time
2004-03-01 13:55
Vending ABABABABABABABAB
Key
EA EAQ7
DKGA 02
Numeric 1252 9416 9400 6201 3255
token
Binary 001010110111100001011011100101001011000011001010000111011101000111
Token

Hex Token O0OADE16E52C3287747

A.2.2 Values for RequestMessage worked example
test RequestMessage ::=

{
tokendatatype O,
idrecord "600727000000000009===0207123456011",
prnrecord “Test Message”
token{ '00ADE16E52C3287747'H}




STS 101-2 Ed1.6 © STSA:2021- 27 —

A.2.3 Content (C)

The content is made up as shown in Table 17.

Table 17 — MessageBlock Content

Name Content

TokenDataType 00

IDRecord 36 30 30 37 32 37 30 30 30 30 30 30 30 30 30 30 30 39 30 30 30303032
30 37 31 32 33 34 35 36 30 31 31 Hex

PRNRecord 54 65 73 74 20 4D 65 73 73 61 67 65

TokenData 00 AD E1 6E 52 C3 28 77 47 Hex (left padded with 6 zeros)

A.2.4 A-XDR encoded message

In this clause we will take the ASN.1 message and encode it using the A-XDR encoding rules.
For this form of encoding, Table 18 shows the general structure of the encoded message.

Table 18 — General structure of encoded message

Identifier Length Contents

Length values are only required where the contents are not of a fixed length.
The Contents element is shown in Table 19.

Note that since lengths for all contents components are known, there is no need to encode
length values into the message payload before each contents component, except for the
Tokens contents to cater for multiple tokens, and the PRNRecord.

Similarly, an Identifier is not required since both transmitter and receiver both know the
message specification.

Recall the RequestMessage schema given in 7.3.3:

RequestMessage ::= SEQUENCE

{
tokenDataType Integer (0..99),
idRecord PrintableString (Size(35)) OPTIONAL,
prnRecord PrintableString OPTIONAL,
tokens SEQUENCE OF OCTET STRING (Size(9))
longtokens SEQUENCE OF OCTET STRING OPTIONAL
}
END

The A-XDR encoded message is shown in Table 19



- 28 - STS 101-2 Ed1.6 © STSA:2021

Table 19 — A-XDR encoded RequestMessage

TokenDataType Usage IDRecord Usage L1 PRN L2 Tokens Usage
Flag Flag UF2 Record Flag
(UF1)
UF3
00 01 36 30 30 37 32 01 ocC 54 65 73 74 01 00 AD E1 00
(Hex) 37 30 30 30 30 20 4D 65 6E 52 C3 (Hex)
(Hex) 30 30 30 30 30 (Hex) | (Hex) | 73736167 | (HeX) | 2877 47
30 30 39 30 30 65 (Hex)
30 30 30 32 30
37313233 34 (Hex)
3536 30 31 31
(Hex)

A non-zero value for Usage Flag UF1 indicates that the IDRecord is present in the message.
A zero value for Usage Flag UF1 indicates that there is no IDRecord field present in the
message. Similarly for UF2 and PRN Record, UF3, and longtokens.

Note that the length value for the entire message is not required since the number of
components of the SEQUENCE are known and defined in the ASN.1 definition of the
message.

The length value (L1) is required since the PRNRecord component is of variable length. In
this example it has a value of 12 (Ox0C) since the PRNRecord is 12 bytes long.

The length value (L2) is required since this SEQUENCE OF component is of variable length.
In this example it has a value of 1 since only one token is sent. The number of octets in the
token itself (9) is specified in the message definition.

A.2.5 DLMS/COSEM encoded message
Using A.2.4 and the DLMS/COSEM definitions given in IEC 62056-6-2, and the various

DLMS/COSEM references given in Clause 2, the encoded DLMS/COSEM message becomes
as shown in Table 20.

Table 20 — DLMS/COSEM encoded RequestMessage

DLMS/COSEM RequestMessage

C3 01 | C1 0073 0000132800FF 01 | 01 | 09 3E [00][01]01[ID Record]01
OC[L1][PRNRecord] [L2] [Tokens]00

a b c d e f g h i j

Note: all values in line 1 of Table 20 are in Hex.

Each item in Table 20 is shown in Table 21.

Table 21 - Items of the DLMS/COSEM encoded RequestMessage

Item Description
a APDU tag for ActionRequest
b Action-Request-Normal
c InvokeldAndPriority Value - 0xC1 (Binary 1 100 0001) => High Priorty Confirmed Request Invokeld
Value = 1
d Classld Value = 0x0073 = 115
e Instanceld Value = 0x0000132800FF = 0-0:19.40.0.255
f Methodld Value




STS 101-2 Ed1.6 © STSA:2021- 29 —

g Optional Data is present - The MethodlnvocationParameters consists of optional data which may
(value is non-zero) or may not (value is zero) be present

h Data type — (09) = OCTET STRING

i Octet String Length — Ox3E = 62 bytes

j Message payload octet string. TokenDataType, IDRecord, PRNRecord, L1, L2, UF1, UF2, UF3, and
Tokens as per Table 19 values

A.3 Worked example — ResponseMessage

A.3.1 DataValue

For the response message, we assume the response in A.3.2 to the request message given in
the worked example in A.2, and using the ResponseMessage schema defined in 7.4.1.

Note that the SEQUENCE size (number of entries) is defined as 5, so this value does not
need to be encoded. The length of the BIT STRING values is not defined in the ASN.1
specification message above (since this can be expanded at a later stage), therefore the
length of each BIT STRING must be encoded in the message.

A.3.2 Test values for DataValue
For the purposes of this example, we use the following test values:

test DataValue ::=

{
auth ‘10000000°'B,
val ‘10000000’B,
token ‘10000000000°B,
idRecord ‘10000000'B,
tkf ‘20000000'B

}

A.3.3 A-XDR encoded DataValue

The A-XDR encoded DataValue is shown in Table 22.

Table 22 — A-XDR DataValue

L1 Auth L2 Validation L3 Token L4 IDRecord UF1 L5 Token
Result Result Result .

Result Failure
0x03 0x80 0x05 0x80 0x0B 0x8000 0x08 0x80 0x01 0x04 0x80

Where L1, L2, L3, L4 and L5 represent the size of the BIT STRINGS AuthenticationResult,
ValidationResult, TokenResult, IDRecordResult, and TokenFailure respectively. Note that the
Token Failure bit-string is optional so UF1 is always present. If there is no token failure, then
L5 and the token failure value are not present.

A.3.4 DLMS/COSEM encoded ResponseMessage

According to DLMS/COSEM rules then, the entire message is as shown in Table 23.




- 30 - STS 101-2 Ed1.6 © STSA:2021

Table 23 — DLMS/COSEM encoded ResponseMessage

DLMS/COSEM ResponseMessage

C7 01

C1 00 01 00 02 02 16 05 04 60 | Table 22 data

c d e f g h i i k | m

The DLMS/COSEM encoded ResponseMessage (token_status) items in Table 23 are
shown in Table 24.

Table 24 — DLMS/COSEM encoded ResponseMessage items

Item

Description

APDU tag for ActionResponse

Action-Response-Normal

InvokeldAndPriority Value - 0xC1 (Binary 1 100 0001) => High Priorty Confirmed Request Invokeld
Value = 1

ResultValue = Success

Usage Flag = Present

Get Data Result Choice = “data”

Data Choice = “structure”

Structure size = 2

Enum data type = 22 (“16” in Hex)

Enum Value = “Authentication failure”

Bit-string data type = 4 (“04” in Hex)

BitString length

message payload




STS 101-2 Ed1.6 © STSA:2021- 31 —

Bibliography

IEC 62055-21, ELECTRICITY METERING — PAYMENT SYSTEMS Part 21: Framework for
standardization

CMU/SEI-93-TR-10 ESC-TR-93-187, The Use of ASN.1 and XDR for Data Representation in
Real-Time Distributed Systems: B. Craig Meyers, Gary Chastek - October 1993

DLMS UA 1001-2;2000, COSEM A-XDR encoding rule



