
COPYRIGHT © STS ASSOCIATION

STS Association

STANDARD TRANSFER SPECIFICATION –

Companion Specification – Key Management System

STS 600-4-2

Edition 1.3

Nov 2021

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 2 OF 70

1 Contents

1 Contents .. 2

2 Normative references .. 8

3 Definitions, Abbreviations and Symbols ... 10
3.1 Definitions.. 10
3.2 Abbreviations ... 10
3.3 Symbols .. 11

4 Key Management Process... 12
4.1 Setup process for SM Manufacturers and KMCs ... 12
4.2 Key publication after SM manufacture or maintenance .. 12
4.3 Vending Key Load Request and Response ... 13

5 Data Types and Encodings.. 14
5.1 Types .. 14

5.1.1 Alphabets.. 14

5.1.2 Sizes ... 14

5.1.3 IDENT ... 15

5.1.4 TIMESTAMP ... 15
5.2 BCD .. 15
5.3 BASE16 and BASE16-DECODE .. 15
5.4 Integer, field element and point conversions.. 16

5.4.1 Integer-to-Octet-String (I2OSP) .. 16

5.4.2 Octet-String-to-Integer (OS2IP) .. 16

5.4.3 Field-Element-to-Octet-String (FE2OSP) .. 17

5.4.4 Octet-String-to-Field-Element (OS2FEP) .. 17

5.4.5 Point-to-Octet-String (EC2OSP) ... 17

5.4.6 Octet-String-to-Point (OS2ECP) ... 17
5.5 CRC16-MODBUS .. 17
5.6 LVCONCAT ... 18
5.7 Delimited Field strings .. 18

5.7.1 DFCONCAT .. 19

5.7.2 DFPARSE ... 19
5.8 Records ... 20

5.8.1 BUILD-RECORD .. 20

5.8.2 PARSE-RECORD ... 20

6 Cryptographic Primitives .. 21
6.1 AES-192 in CCM mode .. 21
6.2 SHA-384 .. 21
6.3 HMAC-SHA-384-192 .. 21
6.4 KDF-X963-SHA-384... 22
6.5 ECC CDH in NIST P-384.. 23
6.6 One-Pass Unified Model Key Agreement Scheme C(1, 2, ECC CDH) .. 23
6.7 ECDSA in NIST P-384 ... 24

6.7.1 ECDSA-SIGN ... 24

6.7.2 ECDSA-VERIFY ... 24
6.8 GENERATE-KEY ... 24
6.9 VALIDATE-KEY ... 25

7 Data Formats and Structures ... 26
7.1 PKID ... 26
7.2 PUBKEY .. 27
7.3 VKLOADREQ .. 28

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 3 OF 70

7.4 VKLOADRESP .. 28
7.5 WRAPPED-KEY .. 29

7.5.1 Attributes .. 29

8 SM Manufacturer Setup ... 30
8.1 Recommended process to generate and publish PUBKEYMAN ... 31

9 SM Initialisation ... 32
9.1 Prerequisites: SM... 32
9.2 SM Initialisation and PUBKEY certification .. 33

9.2.1 Recommended process to generate and certify PUBKEYSM 33
9.3 SM PUBKEY publication .. 34

10 KMC Initialisation ... 35
10.1 Prerequisites: KMC HSM ... 35
10.2 Prerequisites: KMC .. 35
10.3 KMC Setup .. 36

10.3.1 Recommended process to generate and publish PUBKEYKMC 36
10.4 KMC operation... 37

10.4.1 SM Manufacturer PUBKEYMAN updates .. 37

10.4.2 Approved HWID & FWID list updates .. 37

10.4.3 Supply Group management instructions ... 38

10.4.4 SM PUBKEY updates ... 38

11 SM Vending Key Load Request ... 39

12 KMC Vending Key Load Response ... 42

13 SM KEK Confirmation and Vending Key Import ... 48

14 End-of-life and key compromise procedures .. 50
14.1 SM Manufacturer ... 50

14.1.1 End-of-life ... 50

14.1.2 Storage Master Key (SMK) or private ECDSA key (dMAN) compromise ... 50
14.2 Security Module ... 50

14.2.1 End-of-life ... 50

14.2.2 Private ECC CDH key (dSM) compromise .. 51

14.2.3 Storage Master Key (SMK) or Vending Key (VK) compromise 51
14.3 Key Management Centre ... 51

14.3.1 End-of-life ... 51

14.3.2 Key compromise ... 52

15 Bibliography .. 53

16 Appendix A – example VKLOADRESP (informative) ... 57

16.1.1 Record Type VKLOAD.RESP.1 .. 57

16.1.2 Record type Key.1 .. 58

17 Appendix B – Vending Key attributes (normative) .. 60

18 Appendix C – Record-in-email format (normative) ... 61

19 Appendix D – File-of-records format (normative) ... 62

20 Appendix E – Summary of cryptographic primitives and standards (informative) ... 63

21 Appendix F – Summary of functions (informative) ... 66

22 Appendix G – Summary of required Codes of Practice and Registries (informative)

 68

23 Appendix H – Implementation guidance (informative) .. 69

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 4 OF 70

24 Appendix I - Key Agreement Scheme - worked example (informative) 70

Figure 1 - SM Manufacturer Setup Process .. 12

Figure 2 – SM initialisation Process .. 13

Figure 3 - Vending Key Load Request and Response ... 13

Table 1 - Alphabets ... 14

Table 2 - Field Notation ... 14

Table 3- VKLOADRESP.1 record .. 58

Table 4- Record type KEY.1.. 58

Table 5 - Vending Key Attributes ... 60

Table 6 - Cryptographic Primitives .. 63

Table 7 - Alignment of cryptographic primitives ... 64

Revision History

Edition Clause Date Change details from previous Edition

1.0

Initial revision

1.1 General March 2016 See Appendix A.

1.2 Appendix
A-K

May 2018 Removed previous Appendix A (change history)

and replaced this with a VKLOADRESP example.

Removed unused Appendices, renumbered

Appendices.

1.3 Appendix I Feb 2019 Added informative reference to STS600-9-1

file:///C:/data/sts/documents/600%20-%20key%20management/STS600-4%20KMC%20Interface%20Specifications/600-4-2%20KMC%20to%20SM%20Interface%20Specification%20renumbered/Edition%201.3%202019/STS600-4-2%20Ed1.3%202019.docx%23_Toc532624046
file:///C:/data/sts/documents/600%20-%20key%20management/STS600-4%20KMC%20Interface%20Specifications/600-4-2%20KMC%20to%20SM%20Interface%20Specification%20renumbered/Edition%201.3%202019/STS600-4-2%20Ed1.3%202019.docx%23_Toc532624047

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 5 OF 70

STANDARD TRANSFER SPECIFICATION ASSOCIATION

COMPANION SPECIFICATION

STS 600-4-2: Standard transfer specification (STS) – Companion

specification –

FOREWORD

The STS Association is a Not for Profit Company registered in terms of South African Law.
The organisation holds an annual general meeting of members where the members elect
nominated members to the board. The board consists of elected directors as well as one
director each from the four founding organisations, Itron, Conlog, Landis+Gyr and Eskom in
South Africa. The board is supported by a secretariat provided by the firm VdW&Co in
Johannesburg, South Africa.

The Standard Transfer Specification (STS) has become recognized as the only globally
accepted open standard for prepayment systems, ensuring inter-operability between system
components from different manufacturers of prepayment systems. The application of the
technology is licensed through the STS Association, thus ensuring that the appropriate
encryption key management practices are applied to protect the security of the prepayment
transactions of utilities operating STS systems. It has become established as a de facto
worldwide standard for transfer of electricity prepayment tokens since its initial introduction in
South Africa in 1993.

It has become established as a worldwide standard for the transfer of electricity prepayment
tokens since its introduction in South Africa in 1993 and subsequent publication by the
International Electrotechnical Commission as the IEC62055 series of specifications.

Address: The STS Association, P.O. Box 868, Ferndale 2160, Republic of South Africa.
Tel: +27 061 5000
Fax: +27 86 680 7449
Email: email@sts.org.za
Website: http://www.sts.org.za

http://www.sts.org.za/

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 6 OF 70

Introduction

This document specifies a Key Management System (infrastructure) for the Standard

Transfer Specification (STS) – as contemplated in [IEC 62055-41] section 9 and Annex A –

including all relevant cryptographic techniques, protocols, and data formats.

The infrastructure is intended to:

1. Standardise Security Module (SM) initialisation and vending key transfer from a Key

Management Centre (KMC) to an SM.

2. Conform to contemporary standards for key management and cryptographic

security, with the expectation that the specified cryptographic techniques may

remain in use until the year 2045 ([STS COP 402-1] 2nd roll over Base Date)1.

3. Enable secure remote coding of SMs to simplify logistical processes.

4. Support the STSA Code of Practice for Token ID rollover [STS COP 402-1].

The security target has been set at 128 bits for the whole system and 192 bits for key

management operations, in accordance with the key and algorithm security-strength

recommendations of [NIST SP800-57 PART 1] and [NIST SP800-131A].

All cryptographic protocols and algorithms in this specification are standardised by ISO and

NIST. Algorithms – other than those prescribed or constrained by [IEC 62055-41] – are

approved for US Smart Grid Cyber Security by [NISTIR 7628], and meet or exceed2 the

Augmented Requirements for US Federal Cryptographic Key Management Systems

[NIST SP800-152 DRAFT].

This document contains the following information:

• Definitions of the Terms, Abbreviations and Symbols that are used, which should

be read in conjunction with the corresponding sections of [IEC 62055-41].

• Key management process diagrams summarising the steps in the initial and

operational key management processes.

• Specification of Data Types and Encodings that are used to provide exact

representations of logical data fields.

• Definitions of Cryptographic Primitives and Data Formats and Structures used in

key management processes.

• Initial key management and trust establishment processes, comprising SM

Initialisation and KMC Initialisation.

• The operational key management process, comprising the Vending Key Load

Request sent by the SM to the KMC, and the Vending Key Load Response from the

1 Cryptography is a fast-changing field in which 30+ year predictions carry significant risk. The Key

Management techniques should be subject to a security review well before 2035 (3rd Base Date).

2 This specification has a higher security target than [NIST SP800-152 DRAFT] and thus uses larger

key sizes that exceed the security requirement of that standard, but do not meet the interoperability

requirements.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 7 OF 70

KMC (including Vending Key Attributes that may be transferred with the vending

key).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 8 OF 70

2 Normative references

[FIPS PUB 186-3] Digital Signature Standard (DSS), June 2009

HTTP://CSRC.NIST.GOV/PUBLICATIONS/FIPS/FIPS186-3/FIPS_186-3.PDF

[IEC 62055-41] IEC 62055-41:2007 Electricity metering – Payment systems – Part

41: Standard transfer specification (STS) – Application layer

protocol for one-way token carrier systems

[ISO 8601] ISO 8601:2004 Data elements and interchange formats –

Information interchange – Representation of dates and times

[ISO 10118-3] ISO/IEC 10118-3:2004 Information technology – Security

techniques – Hash-functions – Part 3: Dedicated hash-functions

[ISO 11770-3] ISO/IEC 11770-3:2008 Information technology – Security

techniques – Key management – Part 3: Mechanisms using

asymmetric techniques

[ISO 14888-3] ISO/IEC 14888-3:2006 Information technology – Security

techniques – Digital signatures with appendix – Part 3: Discrete

logarithm based mechanisms

[ISO 15782-1] ISO 15782-1:2009 Certificate management for financial services –

Part 1: Public key certificates

[ISO 15946-1] ISO/IEC 15946-1:2008 Information technology – Security

techniques – Cryptographic techniques based on elliptic curves –

Part 1: General

[ISO 18033-2] ISO/IEC 18033-2:2006 Information technology – Security

techniques – Encryption algorithms – Part 2: Asymmetric ciphers

[ISO 18033-3] ISO/IEC 18033-3:2010 Information technology – Security

techniques – Encryption algorithms – Part 3: Block ciphers

[ISO 19772] ISO/IEC 19772:2009 Information technology – Security techniques

– Authenticated encryption

[ISO 9797-2] ISO/IEC 9797-2:2011 Information technology – Security

techniques – Message Authentication Codes (MACs) – Part 2:

Mechanisms using a dedicated hash-function

[NIST SP800-56A] NIST Special Publication 800-56A Recommendation for Pair-Wise

Key Establishment Schemes Using Discrete Logarithm

Cryptography (Revised), March 2007

HTTP://CSRC.NIST.GOV/PUBLICATIONS/NISTPUBS/800-56A/SP800-

56A_REVISION1_MAR08-2007.PDF

[NIST SP800-108] NIST Special Publication 800-108 Recommendation for Key

Derivation Using Pseudorandom Functions, October 2009

HTTP://CSRC.NIST.GOV/PUBLICATIONS/NISTPUBS/800-108/SP800-

108.PDF

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 9 OF 70

[RFC 4648] The Base16, Base32, and Base64 Data Encodings, October 2006

HTTP://TOOLS.IETF.ORG/HTML/RFC4648#SECTION-8

[RPT-0032-100] Ziliant Systems, “Review of the updated STS Key Management

Specification”, version 1.0, 29 November 2012

http://tools.ietf.org/html/rfc4648#section-8

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 10 OF 70

3 Definitions, Abbreviations and Symbols

Note: where abbreviations used in this specification are not listed below, they are defined

in the cited reference within this specification.

3.1 Definitions

BCD Packed Binary Coded Decimal [W:BCD]. Each decimal digit is

encoded as one nibble (4 bits).

For example BCD(“1234”) = x’1234.

Big Endian Byte ordering from most significant to least significant. See

Wikipedia:Endianness [W:END].

Bit string A bit string is an ordered sequence of 0’s and 1’s.

Cryptographic

boundary

Continuous perimeter that establishes the physical and/or logical

bounds of a Cryptographic Module (Security Module). See [ISO

19790].

Dual Control From [ISO 15782-1]: Process of utilizing two or more separate

entities (usually persons), who are operating in concert, to protect

sensitive functions or information

Octet An eight-bit byte. See Wikipedia:Octet [W:OCT].

Octet string A variable-length ordered sequence of octets (eight-bit bytes).

See [ITU X.680] (ASN.1) and Wikipedia:Octet [W:OCT]. Any bit

string with length a multiple of 8 may be interpreted as an octet

string (starting from the left of the bit string, each group of 8 bits is

an octet).

Split Knowledge From [ISO 15782-1]: Condition under which two or more entities

separately have key fragments which, individually, convey no

knowledge of the resultant cryptographic key

3.2 Abbreviations

HSM Hardware Security Module, also called a Cryptographic Module.

This abbreviation usually refers to a Security Module used by the

KMC to manage keys and perform cryptographic operations.

IV Initialisation Vector, used in some block cipher modes of

operation. Also called a Starting Variable (SV).

KMC Key Management Centre, an infrastructure component used to

manage keys in an STS system (as in [IEC 62055-41]).

PRF Pseudorandom function.

RBG Random Bit Generator such as those defined in [ISO 18031] or

[NIST SP800-90].

http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Octet_(computing)
http://en.wikipedia.org/wiki/Octet_(computing)

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 11 OF 70

RTC Real-time Clock.

SM Security Module (called a “Cryptographic Module” in

[IEC 62055-41]).

LVCONCAT Length Value Concatenation

HMAC Hashed Message Authentication Code

MAC Message Authentication Code

3.3 Symbols

a × b or a.b Integer multiplication; the product of integers a and b.

a / b Real division; the quotient of a divided by b as a real number.

a ÷ b Integer division with truncation; the largest integer x where

x ≤ a/b.

⌈a⌉ The ceiling of real number a: the smallest integer ≥ a. ⌈a/b⌉ =

(a+b-1)÷b.

∑ ai for i=1 to n The sum of values a1 + a2 + … + an.

a ≡ b (mod q) a is congruent to b modulo q.

∅ A null or empty field.

[n,m] The interval (range) of integers between and including n and m.

a ∥ b The ordered concatenation of the octet- or bit-strings a and b.

|L| The length in bits of the octet- or bit-string L.

a ⨁ b The bitwise exclusive-OR (bitwise addition modulo 2) of octet- or

bit-strings a and b.

x’H1H2…H2nH2n+1 An octet string represented as a sequence of Base16 digits (0-9,

A-F). Each octet si in an n-octet string S = s1 s2 … sn is

represented by a pair of digits in the Base16 alphabet H2i-1H2i

such that si = H2i-1 × 16 + H2i. See also BASE16() in section 5.3.

For example, x’012345 is a sequence of octets 0x01, 0x23, 0x45.

BitLen(x) Length in bits of bit string or octet string x.

OctetLen(x) Length in octets of octet string x.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 12 OF 70

4 Key Management Process

4.1 Setup process for SM Manufacturers and KMCs

The SM Manufacturer Setup process (Step 1 in Figure 1; also section 8) is performed once

when an SM Manufacturer adopts this key management specification, and infrequently

thereafter (whenever the manufacturer’s digital signing key pair expires, typically every 3

to 5 years).

The KMC Initialisation process (Step 2; also section 10) is performed once when a KMC is

first commissioned, and infrequently thereafter (whenever the KMC’s key establishment

key pair expires, typically every 2 to 3 years).

Figure 1 - SM Manufacturer Setup Process

4.2 Key publication after SM manufacture or maintenance

Whenever fresh cryptographic trust must be established in a Security Module (SM) – such

as after manufacture, refurbishment or maintenance – the SM Initialisation process (Steps

3, 4 and 5 in Figure 2) must be performed.

KMC

SM Manufacturer

2

.

1

 .

SM Operator

Physical

delivery

of SM KMC Initialisation

Each KMC generates a key pair for

key establishment, and presents

the public key (PUBKEYKMC) to all

SM operators.

SM Manufacturer Setup

Each SM manufacturer generates a key pair for

digital signing and sends the public key

(PUBKEYMAN) to each KMC by email. KMCs import

the public keys from SM manufacturers.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 13 OF 70

4.3 Vending Key Load Request and Response

Whenever an SM needs new or updated Vending Keys (VKs) from any KMC, the SM must

prepare a Vending Key Load Request (Step 6 in Figure 3; also section 11) that is sent to

the KMC. The KMC uses the SM’s certified public key (imported in step 5) to verify that the

request originated from an authentic SM, then replies with a Vending Key Load Response

(Step 7 in Figure 3; also section 12) that authenticates the KMC to the SM and includes

zero or more VKs.

SM Operator

KMC

SM
6

7

Vending Key Load Request

An SM in a production environment is

given a KMC’s public key

(PUBKEYKMC) by

the SM Operator, and generates a

VKLOADREQ which is sent to

that KMC by e-mail.

Vending Key Load Response

The KMC finds the SM’s public key

(PUBKEYSM) in its database, authenticates

the SM based on the request, and generates a

response file containing a VKLOADRESP and zero

or more Vending Keys (as WRAPPED-KEY

records). The file is sent to the SM Operator as an

e-mail attachment.

Secure manufacturing facility

KMC

SM Manufacturer SM

SM Initialisation

The SM generates a key

pair for key

establishment, and gives the

public key (PUBKEYSM) to the

Manufacturer.

The key pair is used in steps 6

and 7.

4
SM PUBKEY Publication

The SM Manufacturer

certifies (signs) the SM’s

identity and public key

(PUBKEYSM) using the

Manufacturer’s signing key (from

step 1), and sends the certified

public key to each KMC by e-mail.

5
SM PUBKEY Import

Each KMC receives the

certified SM public key

(and identity) from the

Manufacturer, verifies the certificate

(signature) using the Manufacturer’s

public key (PUBKEYMAN imported in

step 1), then stores the certified SM

public key in the database.

3

Figure 2 – SM initialisation Process

Figure 3 - Vending Key Load Request and Response

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 14 OF 70

5 Data Types and Encodings

5.1 Types

Some data elements must be represented using a limited alphabet and/or a fixed size. This

section specifies alphabets, size notations and encodings.

5.1.1 Alphabets

Table 1 names and describes various alphabets.

Table 1 - Alphabets

Alphabet Short

name

[POSIX RE] Description

Printable

ASCII

P [\x20..\x7E]

or

[[:print:]]

Each octet is a single character in the

US-ASCII [W:ASC] encoding, and SHALL be

in the range of printable characters [W:ASC]

(x’20 – x’7E inclusive).

Alphabetic

(Letter)

A [A-Za-z]

or

[[:alpha:]]

A printable ASCII character in the English

alphabet, that is, a letter in the range ‘A’ (x’41)

to ‘Z’ (x’5A) or ‘a’ (x’61) to ‘z’ (x’7A) inclusive.

Decimal D [0-9]

or

[[:digit:]]

A printable ASCII character in the range ‘0’

(x’30) to ‘9’ (x’39) inclusive, used as the

alphabet for base 10 encoding.

Hexadecimal

[W:HEX]

H [0-9 A-F] A printable ASCII character in the range ‘0’

(x’30) to ‘9’ (x’39) or ‘A’ (x’41) to ‘F’ (x’46)

inclusive, used as the alphabet for Base16

encoding.

Alphanumeric AN [A-Za-z0-9] A character that is either Alphabetic or

Decimal.

5.1.2 Sizes

Table 2 gives a compact notation used to express fixed- or variable-length fields of a

particular alphabet.

Table 2 - Field Notation

Notation Description Examples

nT A fixed-length field of n characters from alphabet T. n

is a decimal number, and T is a short name from

section 5.1.1

1D, 3AN, 8H

http://en.wikipedia.org/wiki/Regular_expression#POSIX
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/Hexadecimal

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 15 OF 70

Notation Description Examples

n-mT A variable-length field of characters from alphabet T,

with a minimum length of n and a maximum length of

m characters. n and m are decimal numbers, and T

is a short name from section 5.1.1.

2-4D, 0-16A

xnT A variable-length field of characters from alphabet T,

with length a multiple of x (a decimal number). T is a

short name from section 5.1.1 and n is a literal ‘n’.

2nH

5.1.3 IDENT

An IDENT is a special type comprising one Alphanumeric character (1AN) followed by zero

to ninety-eight characters that are either Alphanumeric or one of the following: underscore

(‘_’, x’5F), hyphen (‘-‘, x’2D), period (‘.’, x’2E) or comma (‘,’, x’2C). IDENT is described by

the regular expression [POSIX RE] [A-Za-z0-9][A-Za-z0-9_\-.,]{0,39} (maximum length 40

characters).

5.1.4 TIMESTAMP

A TIMESTAMP is an instant in Coordinated Universal Time (UTC) represented as a

complete date and time point using [ISO 8601] basic format: YYYYMMDDThhmmssZ.

The “T” and “Z” are literal, indicating a timestamp (“T”) in UTC (“Z”) format. All characters

Y, M, D, h, m, s are Decimal . YYYY is a calendar year, MM is a calendar month (Jan =

“01”), DD is a calendar day of the month (the first day is “01”). hh is an hour of day in the

range “00” to “23”, mm is a minute from “00” to “59”, and ss is a second from “00” to “59”.

Note that the use of hh=”24” for midnight or ss=”60” for a leap second are prohibited. No

alternative representations, extended formats or separators are permitted.

5.2 BCD

Packed Binary Coded Decimal [W:BCD] is a compact representation for strings of decimal

digits. Each digit is encoded as one nibble (4 bits) in the output.

Function description:

• BCD(X) outputs the packed Binary Coded Decimal representation of 2n-character

decimal string X (type 2nD). If X=d1d2…d2n where di is an octet in the decimal

alphabet then BCD(X) outputs x’d1d2…d2n-1d2n.

Example: If X=”012345” with OctetLen(X)=6, then BCD(X)=x’012345 with

OctetLen(BCD(X))=3.

5.3 BASE16 and BASE16-DECODE

The Base 16 encoding [RFC 4648] - section 8 is intended to represent arbitrary octet strings

in the form of hexadecimal [W:HEX] strings.

http://en.wikipedia.org/wiki/Regular_expression#POSIX
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://tools.ietf.org/html/rfc4648#section-8
http://en.wikipedia.org/wiki/Hexadecimal

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 16 OF 70

Function description:

• BASE16(X) where X is a sequence of octets x1 x2 … xn (an octet string) outputs a

sequence of hexadecimal characters h1 h2 … h2n+1 (also an octet string) such that

for every xi (i = 1, 2, …, n), h2i-1 is the top 4 bits of xi translated into the Hexadecimal

alphabet and h2i is the same translation of the bottom 4 bits of xi.

• BASE16-DECODE(X) is the inverse of BASE16(X), also known as the decode

operation:

BASE16-DECODE(BASE16(X)) = X. The operation SHALL fail if X is not a string

in the Hexadecimal alphabet.

Note that in keeping with the definition of the Hexadecimal alphabet in section 5.1.1, only

uppercase alphabetic characters ‘A’ to ‘F’ are permitted in the output.

5.4 Integer, field element and point conversions

The functions described here are defined in [ISO 18033-2] - sections 5.2.5, 5.3.1 and 5.4.3,

[ANSI X9.62] section A.5, [ANSI X9.63] section 4.3 and [NIST SP800-56A] Appendix B.

A field element of the prime field Fq is an integer in the range [0, q-1], and may also be

represented by a big endian octet string of length exactly ⌈log2(q) / 8⌉ octets. For the

NIST P-384 elliptic curve q is a 384-bit integer.

A point P on an elliptic curve over Fq has coordinates (xP, yP) that are both field elements

of Fq. Point P may be represented by an ordered concatenation of a prefix octet x’04 and

the octet string representations of xP and yP. This specification permits only the

uncompressed form for elliptic curve points (thus the prefix octet is x’04 as for field “H” in

[ISO 18033-2] section 5.4.3 and the “PC” octet in [ANSI X9.63] section 4.3.6).

Within the scope of this specification all points SHALL be on the NIST P-384 elliptic curve

(see section 6.5), and field elements have corresponding limitations.

5.4.1 Integer-to-Octet-String (I2OSP)

Integer-to-Octet-String(x, L) accepts an integer x in the range [0, L-1] and outputs the

octet string representation of x. Conversion fails if x is outside the range [0, L-1].

Let len=⌈log2(L) / 8⌉, then output S where S is the string of octets S1 S2 … Slen satisfying

x = ∑ (28(len-i) × Si) for i = 1 to len.

5.4.2 Octet-String-to-Integer (OS2IP)

Octet-String-to-Integer(S, L) accepts a octet string S with length len=⌈log2(L) / 8⌉

octets, and outputs the integer x represented by S. Conversion fails if x is outside the

range [0, L-1].

Octet-String-to-Integer(Integer-to-Octet-String(x, L), L) = x.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 17 OF 70

5.4.3 Field-Element-to-Octet-String (FE2OSP)

Field-Element-to-Octet-StringDomain(x) is Integer-to-Octet-String(x, q) where q is

given by the Domain parameters.

5.4.4 Octet-String-to-Field-Element (OS2FEP)

Octet-String-to-Field-ElementDomain(S) is Octet-String-to-Integer(S, q) where q is

given by the Domain parameters.

Octet-String-to-Field-Element(Field-Element-to-Octet-String(x)) = x.

5.4.5 Point-to-Octet-String (EC2OSP)

Point-to-Octet-StringDomain(P) accepts a point P = (xP,yP) that is not the point at Infinity,

and outputs the octet string S = x’04 ∥ Field-Element-to-Octet-StringDomain(xP) ∥ Field-

Element-to-Octet-StringDomain(yP).

5.4.6 Octet-String-to-Point (OS2ECP)

Octet-String-to-PointDomain(S) accepts octet string S and outputs a point P constructed

from the coordinates (field elements) xP and yP in Fq. Let FELen = ⌈log2(q)/8⌉ where q

is given by the Domain parameters. Conversion fails if OctetLen(S) ≠ 1+2.FELen.

Interpret S as an ordered concatenation of fixed-length octet strings PC (1 octet), SL

(FELen octets) and SR (FELen octets). FAIL if PC ≠ x’04. Compute

xP = Octet-String-to-Field-ElementDomain(SL) and

yP = Octet-String-to-Field-ElementDomain(SR), then output point P = (xP,yP). Point P is

not guaranteed to be a valid point on the curve.

Octet-String-to-Point(Point-to-Octet-String(P)) = P.

5.5 CRC16-MODBUS

The 16-bit checksum specified in [IEC 62055-41] - section 6.3.7, also known as

CRC16/MODBUS [CRC-CAT].

Function description:

• CRC16-MODBUS(x) computes and outputs a 16-bit checksum over the input octet

string x using a Cyclic Redundancy Code with the generator polynomial

(x16 + x15 + x2 + 1) and the initial checksum 0xFFFF.

This specification treats the CRC as an integer (16-bit big endian bit string), whereas

[IEC 62055-41] formats the CRC as a two octet little-endian value.

The CRC parameters in the Rocksoft™ model [ROCKSOFT] are:

width 16

poly 0x8005

init 0xffff

refin True

refout True

xorout 0x0000

http://reveng.sourceforge.net/crc-catalogue/16.htm#crc.cat.modbus
http://www.ross.net/crc/download/crc_v3.txt

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 18 OF 70

check 0x4b37 (input=”123456789”)

Lammert’s On-line CRC calculator [LAMMERT] supports this checksum and can be used to

validate implementations.

5.6 LVCONCAT

(Mnemonic: “Length-Value Concatenation”) LVCONCAT is a formatting function that

produces an ordered concatenation of octet strings each with a length prefix. The output

is a one-to-one mapping of the inputs, can be parsed unambiguously into the original inputs,

and is prefix-free.

LVCONCAT is designed to format input fields to cryptographic functions such as key

derivation and message authentication. It follows the principles of [CM10] to avoid

exploitable ambiguities in interpretation, and meets the requirements for the following input

data fields:

• FixedInput for the KDF in [NIST SP800-108] (sections 5 and 7).

• SharedInfo for the KDF in [ANSI X9.63] - section 8, equivalent to OtherInfo in

[NIST SP800-56A] - section 5.8.1.

• MacData (also called M) for key confirmation in [ISO 11770-3] - section 9, [ANSI

X9.63] and [NIST SP800-56A] - section 8.2.

Function description:

• LVCONCAT(I1, I2, …, In) outputs as an octet string a one-to-one prefix-free

encoding of input octet strings I1, I2, …, In (0≤n<256, OctetLen(Ii)<256) that can be

unambiguously parsed into the original inputs.

Input:

• I1, I2, …, In, the n input octet strings.

Process:

• If n > 255 then FAIL.

• Set S to a 1 octet (8-bit) integer representation of n.

• For j = 1, 2, …, n do:

o If OctetLen(Ij) > 255 then FAIL.

o Set L to a 1 octet (8-bit) integer representation of OctetLen(Ij).

o S = S ∥ L ∥ Ij.

• Output S.

5.7 Delimited Field strings

A delimited string is an ordered concatenation of fields that are separated from each other

by a non-alphabetic delimiter (a character outside the field alphabet).

http://www.lammertbies.nl/comm/info/crc-calculation.html

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 19 OF 70

DFCONCAT (mnemonic: “Delimited Field Concatenation”) is a formatting function that

produces an ordered concatenation of printable ASCII strings that are separated from each

other by a delimiter from the printable ASCII alphabet. The output is prefix-free with respect

to all other outputs for the same number of input fields.

DFPARSE is the corresponding parsing function.

5.7.1 DFCONCAT

Function description:

• DFCONCAT(DELIM, I1, I2, …, In) outputs as a printable ASCII string a one-to-one

encoding of the input printable ASCII strings I1, I2, …, In none of which may contain

the printable ASCII character DELIM. The output can be unambiguously parsed

into the original inputs.

Input:

• DELIM, the delimiter character (printable ASCII, 1P).

• I1, I2, …, In, the n input printable ASCII strings.

Process:

• If DELIM is not a printable ASCII character (1P) then FAIL.

• Set S to an empty octet string.

• For j = 1, 2, …, n do:

o If any octet in Ij equals DELIM or is not printable ASCII then FAIL.

o S = S ∥ Ij ∥ DELIM.

• Output S.

Note that the output always ends with the delimiter character DELIM; this is necessary to

obtain a prefix-free encoding of the inputs.

5.7.2 DFPARSE

Function description:

• DFPARSE(DELIM, S) is the inverse of DFCONCAT, also known as the parsing

operation: DFPARSE(DELIM,DFCONCAT(DELIM, I1, I2, …, In)) = I1, I2, …, In. The

operation fails if octet string S is not a valid output of DFCONCAT(DELIM, …) (that

is, a string of printable ASCII characters ending in DELIM).

Input:

• DELIM, the delimiter character (printable ASCII, 1P).

• S, the octet string to be parsed.

Process:

• If DELIM is not a printable ASCII character (1P) then FAIL.

• If the last octet in S is not DELIM then FAIL(“Bad encoding in input”).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 20 OF 70

• If any octet in S is not printable ASCII then FAIL(“Bad characters in input”).

• Split S into fields O1, O2, …, On delimited by the character DELIM.

• Output n and O1, O2, …, On.

5.8 Records

A record is a data structure with multiple fields and a printable ASCII representation. Within

this specification all data transfer and storage formats are defined as records.

A record combines into a printable ASCII string: a type indicator, an ordered sequence of

fields, and a checksum. The type indicator must be an IDENT, and each field must be a

printable ASCII string that does not contain the delimiter character.

5.8.1 BUILD-RECORD

BUILD-RECORD(rectype, delim, n, I1, I2, …, In) accepts as input an IDENT rectype,

a single printable ASCII character delim that SHALL NOT be alphanumeric, a positive

integer n (0 < n < 256), and n printable ASCII strings that SHALL NOT contain the

delimiter character delim. This function constructs R = DFCONCAT(delim, rectype, I1,

I2, …, In), computes C = CRC16-MODBUS(R) (C is a 16-bit big endian bit string) and

outputs R ∥ BASE16(C).

5.8.2 PARSE-RECORD

PARSE-RECORD(rectype, delim, n, S) accepts as input an IDENT rectype, a single

printable ASCII character delim that SHALL NOT be alphanumeric, a positive integer

n (0 < n < 256), and an octet string S. This function verifies that S is a record of type

rectype and has a valid CRC.

Process:

• If S does not start with the string rectype ∥ delim then FAIL(“Input is not a record

of type ” ∥ rectype).

• If OctetLen(S) < (OctetLen(rectype)+5) then FAIL(“Missing CRC on record ”

∥ rectype).

• Split S into R ∥ C’, where C’ is the last 4 characters of S.

• Compute C = CRC16-MODBUS(R), C is a 16-bit big endian bit string.

• If C’ ≠ BASEI6(C) then FAIL(“Bad checksum on record ” ∥ rectype).

• Parse R using DFPARSE(delim, R) to recover fields O1, O2, …, Om. Propagate

errors.

• If n ≠ m then FAIL(“Wrong number of fields in record ” ∥ rectype).

• Output O1, O2, …, On.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 21 OF 70

6 Cryptographic Primitives

6.1 AES-192 in CCM mode

The AES block cipher with 192-bit cipher key as specified in [ISO 18033-3] and

[FIPS PUB 197], operated in CCM mode as specified in [ISO 19772] and

[NIST SP800-38C] and [RFC 3610], with a tag length (MAC) of 128 bits.

This specification requires that the CCM implementation SHALL use a Flags Octet value

of x’7B in B0, and SHALL NOT permit or accept any other value for the Flags Octet.

Function description:

• AES-192-CCMENC(K, N, additional, plaintext) computes a 128-bit keyed

authentication tag over the octet string inputs plaintext (maximum length 223-1

octets) and additional (maximum length 223-1 octets) using the 192-bit key K and

96-bit nonce N, enciphers the input plaintext using K and N, and outputs a

ciphertext that includes the authentication tag.

• AES-192-CCMDEC(K, N, additional, ciphertext) accepts octet string inputs

ciphertext (maximum length 223+15 octets) and additional (maximum length 223-1

octets) where ciphertext includes a 128-bit keyed authentication tag, deciphers the

ciphertext using the 192-bit key K and 96-bit nonce N to produce plaintext, verifies

the authentication tag over plaintext and additional using K and N, and outputs

plaintext.

6.2 SHA-384

The SHA-384 hash function, as specified in [ISO 10118-3] and [FIPS PUB 180-4].

Function description:

• SHA-384(X) outputs a 384-bit digest computed over the input bit string X.

6.3 HMAC-SHA-384-192

HMAC-SHA-384-192 is defined in RFC 4868 as the keyed-hash message authentication

code (HMAC) specified in [ISO 9797-2] and [FIPS PUB 198-1] and [RFC 2104], using the

hash function SHA-384 (section 6.2), with the MAC truncated to the leftmost 192 bits.

Within the scope of this specification HMAC-SHA-384-192 is only used with a key of less

than 1024 bits (the block size of SHA-384). The implementation given below has been

simplified accordingly.

Function description:

• HMAC-SHA-384-192(K, text) outputs a 192-bit message authentication code

(MAC) computed over the n-octet input text (0 ≤ n < 216) using the m-octet key K

(0 < m < 128).

Input:

• K, a secret key (as an octet string).

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://www.ietf.org/rfc/rfc3610.txt
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://tools.ietf.org/html/rfc4868
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://tools.ietf.org/html/rfc2104

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 22 OF 70

• text, the data on which the HMAC is computed.

Process:

• B = 128, an integer constant giving the block size in octets of the hash function

(SHA-384).

• ipad = x’3636…, an octet string constant of length B (the octet x’36 repeated B

times).

• opad = x’5C5C…, an octet string constant of length B (the octet x’5C repeated B

times).

• If OctetLen(K) ≥ B then FAIL.

• If OctetLen(text) ≥ 216 then FAIL.

• Append zeros (octets x’00) to the end of key K to create a B-octet string K0.

• Compute MAC = SHA-384((K0 ⨁ opad) ∥ SHA-384((K0 ⨁ ipad) ∥ text)).

• Output the leftmost 192 bits of MAC.

6.4 KDF-X963-SHA-384

The Key Derivation Function (KDF) specified in section 5.6.3 of [ANSI X9.63],

[ISO 11770-3] - Annex B.3, and [SEC 1] section 3.6.1, using the hash function SHA-384

(section 6.2).

Within the scope of this specification KDF-X963-SHA-384 is only used with

keydatalen = 384 bits, and small Z and SharedInfo (less than 219 bits). The

implementation given below has been simplified accordingly.

Function description:

• KDF-X963-SHA-384(Z, SharedInfo, keydatalen) outputs a keydatalen-bit key

derived from an asymmetrically shared secret Z (maximum length 210-1 bits) and

octet string SharedInfo (maximum length 216-1 octets).

Input:

• Z, a bit string of secret data (maximum length 210-1 bits).

• SharedInfo, an octet string of non-secret data, 0 < OctetLen(SharedInfo) ≤ (216-

1).

• keydatalen, an integer giving the length in bits of keying data to be generated.

Process:

• hashlen = 384, an constant integer giving the length in bits of the digest (output)

produced by the hash function (SHA-384).

• If BitLen(Z) ≥ 210 then FAIL.

• If OctetLen(SharedInfo) ≥ 216 then FAIL.

• If keydatalen > hashlen then FAIL.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 23 OF 70

• Set counter (a 32-bit, big-endian bit string) to x’00000001.

• Compute KeyData = SHA-384(Z ∥ counter ∥ SharedInfo).

• Output the leftmost keydatalen bits of KeyData.

6.5 ECC CDH in NIST P-384

The Cofactor Diffie-Hellman (CDH) primitive specified in [ISO 11770-3] - Annex D,

[ANSI X9.63] section 5.4.2 (“Modified Diffie-Hellman Primitive”), [NIST SP800-56A] section

5.7.1.2 and [SEC 1] section 3.3.2.

This specification requires that all CDH operations SHALL be performed using the

NIST P-384 curve and domain parameters that are specified in [FIPS PUB 186-3], [ANSI

X9.62] (as “ansix9p384r1”) and [SEC 2] (as “secp384r1”). Octet string representations of

points on the elliptic curve SHALL use uncompressed form affine coordinates

([ISO 18033-2] - section 5.4.3, [ANSI X9.63] section 4.3.6) as described by the Point-to-

Octet-String conversion (section 5.4.5).

CDH uses scalar (integer) multiplication on an elliptic curve over a finite prime field, as

defined in [ISO 15946-1] - section A.1.2 and A.4, and in [SEC 1].

Function description:

• ECC-CDHDomain(dA, QB) accepts A’s private key dA (an integer in the range [1,n-1]

where n is given by the Domain parameters, always NIST P-384 in this

specification) and B’s public key QB (a point on the elliptic curve), and computes

and outputs a shared secret octet string Z.

Input:

• dA, the private key of entity A (an integer in the range [1,n-1]).

• QB, the public key of entity B (a point on the curve).

Process:

• Use domain parameters (q, FR, a, b, G, n, h) = NIST P-384.

• Compute the point P = (xP,yP) = h dA QB (scalar multiplication of a point on an elliptic

curve).

• If P is the point at infinity then FAIL.

• Set Z to xP (the x-coordinate of P).

• Zeroise intermediate results and output Field-Element-to-Octet-String(Z).

6.6 One-Pass Unified Model Key Agreement Scheme C(1, 2, ECC CDH)

The One-Pass Unified Model key agreement scheme using the Elliptic Curve Cofactor

Diffie-Hellman (ECC CDH) primitive, also known as C(1, 2, ECC CDH) or C(1e, 2s). The

scheme is specified in [NIST SP800-56A] - section 6.2.1.2 and [ANSI X9.63] section 6.5,

and is used with bilateral key confirmation.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 24 OF 70

The scheme is a composite of [ISO 11770-3] key agreement mechanisms 1 and 2 and thus

complies with that standard although it is not specifically identified and described.

Key confirmation from the SM to the KMC is modified to use a Time Variant Parameter

(TVP) instead of a random nonce, allowing the confirmation to be included in the first

protocol message, but slightly reducing freshness guarantees. This modification is

permitted (the Nonce used in key confirmation is not required to be random) and the first

protocol message is consistent with the entity authentication requirements of [ISO 9798-4].

The scheme is not detailed here; instead the scheme steps and all procedural prerequisites

are included in the Vending Key Load Request (section 11), Vending Key Load Response

(section 12) and KEK Confirmation (section 13) processes.

6.7 ECDSA in NIST P-384

The Elliptic Curve Digital Signature Algorithm (ECDSA) specified in [ISO 14888-3], [ANSI

X9.62], [FIPS PUB 186-3] and [SEC 1].

This specification requires that all ECDSA operations SHALL BE performed using the NIST

P-384 curve and domain parameters that are specified in [FIPS PUB 186-3], and that the

hash function SHALL BE SHA-384 (section 6.2).

6.7.1 ECDSA-SIGN

ECDSA-SIGNDomain,Hash(dA, M) accepts A’s private key dA (an integer in the range [1,n-

1] where n is given by the Domain parameters) and a message M (an octet string),

and computes and outputs a signature (r, s) where r, s are both in [1,n-1].

In this specification the Domain is always NIST P-384, and the Hash function is SHA-

384.

6.7.2 ECDSA-VERIFY

ECDSA-VERIFYDomain,Hash(QA, M, (r, s)) accepts A’s public key QA (a point on the

elliptic curve given by the Domain parameters), a message M (an octet string), and a

purported signature (r, s); checks the purported signature and outputs an indication of

whether the signature is valid or not: “valid” or “invalid”.

In this specification the Domain is always NIST P-384, and the Hash function is SHA-

384.

6.8 GENERATE-KEY

The Elliptic Curve key generation primitive specified in [ISO 15946-1] - section 6.1, [ANSI

X9.63] section 5.2.1 and [FIPS PUB 186-3] section B.4 (using candidate testing).

This specification requires that all CDH and ECDSA keys use the NIST P-384 curve and

domain parameters; see sections 6.5 and 6.7.

Function description:

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 25 OF 70

• GENERATE-KEY() generates and outputs a random private key dA (an integer in

the range [1,n-1] where n is given by NIST P-384) and the corresponding public key

QA (a point on the P-384 curve).

Process:

• Use domain parameters (q, FR, a, b, G, n, h) = NIST P-384.

• Select a unique and unpredictable integer dA in the range [1, n-1]:

o Obtain a string S of 384 bits from a random bit generator (RBG) with a

security-strength of 192 bits or more.

o Set I = Octet-String-to-Field-Element(S).

o If (I > n – 2) then discard S and I and repeat the generation.

o Set dA = I + 1.

• Compute the public key QA = dA G (scalar multiplication of a point on an elliptic

curve).

• Output the key pair dA and QA.

6.9 VALIDATE-KEY

The public key validation primitive specified in [ISO 15946-1] - section 7, [ANSI X9.63] section

5.2.2.1 (“Standard Public Key Validation Primitive”), and [NIST SP800-56A] section 5.6.2.5

(“ECC Full Public Key Validation Routine”).

Function description:

• VALIDATE-KEY(QB) outputs TRUE if QB = (xQ,yQ) is a point on the NIST P-384

curve and is not the identity element, or fails otherwise.

Process:

• Use domain parameters (q, FR, a, b, G, n, h) = NIST P-384.

• If QB is the point at Infinity then FAIL.

• If xQ is not in the range [0, q-1] or yQ is not in the range [0, q-1] then FAIL.

• Verify that (yQ)2 ≡ (xQ)3 + a.xQ + b (mod q) or FAIL.

• Verify that P = n Q (scalar multiplication) is the point at Infinity or FAIL.

• Output TRUE.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 26 OF 70

7 Data Formats and Structures

7.1 PKID

Rectype = “SMID.1” or “SMMAN.1” or “KMCID.1”

Delim = ‘:’ = x’3A

A PKIDA is a record (section 5.8) with delimiter ‘:’ that identifies entity A by binding together

the unique name of entity A with A’s public key:

• The tuple (Manufacturer, MID) uniquely identifies entity A.

• The tuple (Manufacturer, MID, GNT) uniquely identifies a public key associated with

entity A.

• Given PKIDA it is difficult to find a public key QA’ ≠ QA that satisfies the Fingerprint.

The record type indicates the role of the entity in the key management infrastructure:

• rectype = “SMID.1” if entity A is an SM;

• rectype = “SMMAN.1” if A is an SM Manufacturer;

• rectype = “KMCID.1” if A is a KMC.

The record contains the following fields, in order:

Position Field Type Description

1 Manufacturer IDENT Identifies the manufacturer of entity A.

2 MID IDENT A unique Module IDentifier of entity A with

respect to the Manufacturer; the tuple

(Manufacturer, MID) must be globally

unique.

3 GNT TIMESTAMP “Generation time”: the time at which A’s key

pair (dA, QA) was generated. The key pair

SHALL NOT be used for signing or key

agreement before this date.

4 Fingerprint 16H A collision resistant hash that binds the

preceding fields and record type to A’s

public key QA.

Let S = DFCONCAT(‘:’, rectype,

Manufacturer, MID, GNT, QAHEX) where

QAHEX = BASE16(Point-To-Octet-

String(QA), then Fingerprint is the leftmost

16 characters of BASE16(SHA-384(S)).

To verify the Fingerprint of a PKIDA and purported public key QA': parse PKIDA using

PARSE-RECORD() and compute Fingerprint' using the recovered fields and QA', then

compare the recovered Fingerprint with the computed Fingerprint'.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 27 OF 70

7.2 PUBKEY

Rectype = “PK.ECDH.1” or “PK.ECDSA.1”

Delim = ‘|’ = x’7C

A PUBKEYA is public key certificate [W:CERT] that identifies entity A and contains A’s public

key. The certificate may be signed by an Issuer, self-signed, or unsigned.

The PUBKEY is represented as a record (section 5.8) with delimiter ‘|’, and the record type

indicates the purpose and permitted usage of the public key:

• rectype = “PK.ECDH.1” for a ECC Cofactor Diffie Hellman (section 6.5) public key

that is reserved for use in the key management processes specified in this

document;

• rectype = “PK.ECDSA.1” for an ECDSA public key with NIST P-384 domain

parameters.

The record contains the following fields, in order:

Position Field Type Description

1 Subject (IDA) Printable PKID (section 7.1) of the owner of the public

key QA; includes the public key Fingerprint.

2 QAHEX 194H Entity A’s public key QA, encoded as

BASE16(Point-To-Octet-String(QA)).

3 Expiry TIMESTAMP The time at which A’s key pair (dA, QA)

expires. Expiry SHALL be greater than the

GNT (generation time) field of the Subject.

An expired key pair SHALL NOT be used for

signing or for key agreement, although an

expired ECDSA key may be used to verify

signatures created before the expiry date.

4 Issuer ∅ or Printable PKID of the Issuer responsible for

generating the Signature. Leave empty if

the PUBKEY is unsigned.

5 Signature ∅ or 192H A digital signature that binds together the

preceding fields and record type, or empty if

the PUBKEY is unsigned.

Let M = DFCONCAT(‘|’, rectype, Subject,

QAHEX, Expiry), and

let (r, s) = ECDSA-SIGN(dISSUER, M) where

dISSUER is the Issuer’s private key, then the

Signature is BASE16(Integer-to-Octet-

String(r, n) ∥ Integer-to-Octet-String(s, n))

where n is given by NIST P-384.

To verify the Signature of a PUBKEYA: parse PUBKEYA using PARSE-RECORD(),

construct M (as described for the Signature field) and verify Signature using ECDSA-

VERIFY(QISSUER, M, Signature), where QISSUER is the Issuer’s public key.

http://en.wikipedia.org/wiki/Public_key_certificate

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 28 OF 70

7.3 VKLOADREQ

Rectype = “VKLOAD.REQ.1”

Delim = ‘|’ = x’7C

A Vending Key Load Request VKLOADREQSM is a record (section 5.8) of type

“VKLOAD.REQ.1” with delimiter ‘|’ that is constructed by the SM and sent to the KMC to

request vending keys.

The record contains the following fields, in order:

Position Field Type Description

1 IDSM Printable PKID (section 7.1) of the requesting SM.

2 IDKMC Printable PKID (section 7.1) of the target KMC.

3
TVPKMC TIMESTAMP Time variant parameter taken from the

SM’s RTC.

4
HWID IDENT SM hardware model and revision (see

section 9.1).

5
FWID IDENT SM firmware application and version (see

section 9.1).

6

QEHEX 194H SM ephemeral public key QE (see section

11) encoded as BASE16(Point-To-Octet-

String(QE)).

7

MacTagSMHEX 48H SM key confirmation MacTagSM (see

section 11) encoded as

BASE16(MacTagSM).

7.4 VKLOADRESP

Rectype = “VKLOAD.RESP.1”

Delim = ‘|’ = x’7C

A Vending Key Load Response VKLOADRESPKMC is a record (section 5.8) of type

“VKLOAD.RESP.1” with delimiter ‘|’ that is constructed by the KMC and sent to the SM in

response to a successful VKLOADREQ.

The record contains the following fields, in order:

Position Field Type Description

1
IDKMC Printable PKID (section 7.1) of the responding

KMC.

2 IDSM Printable PKID (section 7.1) of the requesting SM.

3
TVPKMC TIMESTAMP Time variant parameter copied from the

SM’s VKLOADREQSM.

4

MacTagKMCHEX 48H KMC key confirmation MacTagKMC (see

section 12) encoded as

BASE16(MacTagKMC).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 29 OF 70

7.5 WRAPPED-KEY

Rectype = “KEY.1”

Delim = ‘|’ = x’7C

A Wrapped Key is a record (section 5.8) of type “KEY.1” with delimiter ‘|’ that is constructed

by the KMC and sent to the SM. This constitutes a symmetric key transfer scheme

consistent with [ISO 11770-2] mechanism 2.

The record contains the following fields, in order:

Position Field Type Description

1 Nonce 24H A 96-bit value represented in the Hexadecimal

alphabet. Each WRAPPED-KEY under a specific

KEK must have a unique nonce.

2 Attributes P The attributes associated with the key, encoded

as a delimited printable ASCII string using a card

format as described in section 7.5.1 below.

Supported attributes are defined in Appendix B –

Vending Key attributes.

3 ProtectedKey H The key material K (maximum length 160 bits)

protected under the Key Exchange Key (KEK)

using authenticated encryption (with Attributes as

associated data) and encoded in the Hexadecimal

alphabet. ProtectedKey = BASE16(AES-

CCM(KEK, Nonce, Attributes, K)).

7.5.1 Attributes

Attributes are a collection of unique attribute names Ni (type 3AN) and corresponding

values VNi (type P), i = 1,2, …,n. The encoding, range and interpretation of VNi is

determined by Ni according to the Vending Key attributes table given in Appendix B –

Vending Key attributes, but in all cases VNi SHALL be printable ASCII (and SHALL exclude

the record and field delimiter characters ‘|’=x’7C and ‘;’=x’3B) with a maximum length of

252 characters1.

The Attributes field of a WRAPPED-KEY is encoded as a delimited printable ASCII string

using a card format: each name Ni and associated value VNi is concatenated to form a

single card. Let S1,…,Sn be the names N1,…,Nn sorted in strictly ascending lexicographical

order [W:LEX] in the ASCII alphabet (no duplicates are permitted), then Attributes =

DFCONCAT(‘;’, S1∥VS1, …, Sn∥VSn).

1 The length limit of 252 characters ensures that each string Ni ∥ VNi is a valid input field to

LVCONCAT.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 30 OF 70

8 SM Manufacturer Setup

Prior to SM initialisation an SM Manufacturer SHALL:

• Select a unique name MANUFACTURER (an IDENT) to identify itself.

o The STSA SHOULD provide a registry service for Manufacturer names.

• Generate an asymmetric digital signature key pair for the purpose of certifying SM

public keys.

o The key pair SHALL be an ECDSA key pair using the NIST P-384 domain

parameters and having a security-strength of at least 192 bits, and SHALL

be generated using an RBG having equivalent (or stronger) security-

strength.

o The key pair SHALL be generated and managed with respect to the

principles of split knowledge and dual control. It SHALL NOT be possible

for any single operator to sign an SM public key using the private digital

signature key.

o The secret key SHALL be protected by an HSM. The HSM SHALL meet the

security prerequisites for a KMC HSM (section 10.1).

• Publish the self-signed public key to all KMCs.

o The public key SHALL be published as a self-signed PUBKEY record

(referred to as PUBKEYMAN; see section 7.2) with record type

“PK.ECDSA.1”.

o The PUBKEY Expiry SHALL be set to the time of generation plus the

Originator Usage Period (see below).

o A procedure to publish PUBKEYMAN SHALL be specified by KMC standards

or operational documentation. Each recipient of the PUBKEYMAN SHALL

check that the public key is not expired, and SHALL check the validity of the

public key by manually confirming the public key’s fingerprint over an

independent communication channel.

The Manufacturer’s key pair SHALL have a lifespan (Originator Usage Period) of at most 3

years (consistent with [NIST SP800-57 PART 1]):

• When the Manufacturer’s key pair expires, the Manufacturer SHALL generate a new

key pair and publish the public key in the manner prescribed by this section.

• The Manufacturer SHALL NOT certify SM public keys using an expired key.

o The Manufacturer’s private key dMAN SHALL be associated with an expiry

date such that the signature operation SHALL NOT generate a signature

using an expired key.

• A KMC SHALL NOT trust any PUBKEYSM for which the GNT (the point in time at

which the SM key pair was generated) is more recent than the expiry date of the

PUBKEYMAN used to certify PUBKEYSM.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 31 OF 70

8.1 Recommended process to generate and publish PUBKEYMAN

The following process is RECOMMENDED:

• The SM Manufacturer selects a unique name MANUFACTURER (an IDENT).

• The Manufacturer uses an HSM to generate and store a unique ECDSA key pair

(dMAN, QMAN) using the NIST P-384 domain parameters, in accordance with [ISO

14888-3], [FIPS PUB 186-3], [ANSI X9.62] and/or [SEC 1].

• The Manufacturer constructs a PKIDMAN with rectype “SMMAN.1”, MID “A”, and

GNT the time at which dMAN was generated.

• The Manufacturer constructs a PUBKEYMAN with rectype “PK.ECDSA.1” and

Subject PKIDMAN. Expiry is at most 3 years after the GNT. The Issuer is PKIDMAN

and the Signature is generated using dMAN.

• On demand by any KMC, the Manufacturer sends to the KMC the PUBKEYMAN in

record-in-email format (Appendix C – Record-in-email format).

• Operating under the principle of dual control, two KMC operators obtain the

Fingerprint from the Manufacturer and confirm the Fingerprint in the PKIDMAN, then

instruct their system to import and trust the PUBKEYMAN.

o If no prior relationship between the KMC and the Manufacturer exists, then

the operators SHOULD obtain the Fingerprint via a face-to-face meeting

with the Manufacturer, or through a Trusted Third Party. Where there is a

prior relationship a telephonic confirmation of the Fingerprint is adequate.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 32 OF 70

9 SM Initialisation

9.1 Prerequisites: SM

An SM SHALL have:

• A high quality entropy source that has been assessed using statistical tests from

NIST SP800-22. The SM SHALL implement a continuous quality test on the output

of the entropy source, for example by ensuring that adjacent blocks read from the

source are distinct.

• A deterministic Random Bit Generator (RBG) seeded from the entropy source, with

a security-strength of 192 bits or more.

o The RBG SHALL comply with [ISO 18031], [NIST SP800-90], [ANSI X9.82]

and/or [SEC 1].

• A real-time clock (RTC) for which the state is protected within the SM’s

cryptographic boundary.

o The RTC SHOULD NOT drift by more than 3 days over the documented

lifetime or maintenance interval of the SM.

• Secure storage for sensitive data. All keys and sensitive data SHALL include

integrity protection. Key separation and substitution prevention SHALL be assured

(for example using techniques from [ISO 11568-2]).

Keys and sensitive data may be stored using one of the following techniques:

o Within the cryptographic boundary of the SM, in non-volatile memory that is

erased on tamper, and SHALL include integrity protection (such as a

checksum); OR

o Authentically encrypted under a Storage Key that is securely stored using

the previous technique.

• Tested implementations of all cryptographic primitives (section 6) required by this

specification.

• An authentic copy of the NIST P-384 domain parameters.

• HWID (string of type IDENT), a hardware identifier that SHALL be composed of a

MANUFACTURER, MODEL and REVISION.

• FWID (string of type IDENT), a firmware application and version identifier.

• MID (string of type IDENT), a unique hardware identifier or assigned soft identifier.

Each device shall have a MANUFACTURER-unique MID, not merely a MODEL-

unique MID. A model name or code can be used as a MID prefix to guarantee this.

An SM SHOULD comply with a recognised standard for cryptograph modules such as [ISO

19790], [FIPS PUB 140-2], or [PCI HSM]. The target security level or evaluation criteria for

such compliance are beyond the scope of this document. The STSA SHOULD maintain a

Code of Practice detailing the security requirements for an SM.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 33 OF 70

9.2 SM Initialisation and PUBKEY certification

Secure key agreement between an SM and a KMC – including authentication of the SM –

requires that the SM contain secret information that is unique to the SM, and unknown and

unpredictable to any person.

A Manufacturer SHALL have a documented process for SM initialisation and PUBKEY

certification. The process SHALL be performed before an SM is delivered by the

Manufacturer, and SHALL include at minimum:

• Complete the production of the SM, including loading firmware that has been

produced by the STSA.

• In a physically secure facility and under dual control:

o By means of physical inspection verify the integrity of all equipment to be

used in this process.

o Instruct the SM to generate a unique key pair (dSM, QSM) and to return the

public key QSM.

o Use the Manufacturer’s private key dMAN to certify the public key QSM,

producing a PUBKEYSM certificate.

o Ensure that QSM is protected against modification or substitution.

▪ It SHALL NOT be possible for any individual to cause a chosen

public key QOP to be signed under the Manufacturer’s private key

dMAN.

▪ By implication the generation and certificate of QSM must be tightly

coupled.

9.2.1 Recommended process to generate and certify PUBKEYSM

The following process is RECOMMENDED as a final step during manufacture of the SM:

• This process SHALL be performed under dual control.

• Perform a physical inspection of the SM to confirm that it is fully manufactured per

specification and intact.

• Load into the SM firmware that has been approved by the STSA.

• Set the SM RTC to the current date and time (using a reliable clock).

• Instruct the SM to generate a unique PUBKEYSM-NOSIG. The SM SHALL:

o Set GNT (type TIMESTAMP) to the current date according to the RTC.

o Generate a unique ECDH key pair (dSM, QSM) using GENERATE-KEY().

▪ dSM is known only to the SM and SHALL NOT be revealed to any

other party (including the SM manufacturer) under any

circumstances.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 34 OF 70

o Set IDSM = BUILD-RECORD(“SMID.1”, ‘:’, 4, MANUFACTURER, MID, GNT,

Fingerprint) where Fingerprint is computed from QSM and other fields as

described for PKID (section 7.1).

o Securely store dSM, QSM and IDSM. These values SHALL be stored within

the cryptographic boundary in non-volatile memory that is erased on tamper,

and SHALL include integrity protection (such as a checksum).

o Set PUBKEYSM-NOSIG = BUILD-RECORD(“PK.ECDH.1”, ‘|’, 5, IDSM,

QSMHEX, Expiry, ∅, ∅) where QSMHEX is encoded as described for PUBKEY

(section 7.2). Expiry MAY be set to “99991231T115959Z”.

o Return the unsigned PUBKEYSM-NOSIG.

• Instruct the Manufacturer’s HSM to sign the PUBKEYSM-NOSIG to create a certified

PUBKEYSM.

o The HSM SHALL require dual authentication of two trusted operators before

performing the signature operation.

o The HSM SHALL NOT create a signature if the GNT of PUBKEYSM-NOSIG is

greater than the Expiry of PUBKEYMAN.

o The HSM creates PUBKEYSM (based on PUBKEYSM-NOSIG), sets the Issuer

to PKIDMAN, and generates the Signature using dMAN.

• Store PUBKEYSM, and discard PUBKEYSM-NOSIG.

9.3 SM PUBKEY publication

Whenever the association between an SM and a public key is created or modified – such

as after SM manufacture or maintenance (section 4.2) or a suspected key compromise –

the SM Manufacturer SHALL publish the updated association to all KMCs:

• To revoke a public key with replacement follow the SM Initialisation and PUBKEY

certification process to create an updated PUBKEYSM.

• To revoke a public key without replacement construct and sign a PUBKEYSM with

QSM = (0,0) (an invalid point).

• The Manufacturer adds each updated PUBKEYSM to a file-of-records (Appendix D

– File-of-records format).

• The file sent to all KMCs (for example as an e-mail attachment).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 35 OF 70

10 KMC Initialisation

10.1 Prerequisites: KMC HSM

The KMC SHALL use a Hardware Security Module (HSM) to manage all keys and perform

all cryptographic operations specified in this document.

• The HSM SHALL be certified to [FIPS PUB 140-2] Security Level 3 or higher, or to

an equivalent evaluation level of a recognised standard for cryptographic modules

such as [ISO 19790], or [PCI HSM].

• The STSA SHOULD maintain a Code of Practice detailing the security requirements

for an HSM.

The HSM SHALL have:

• A high quality entropy source that has been assessed using statistical tests from

NIST SP800-22. The HSM SHALL implement a continuous quality test on the

output of the entropy source, for example by ensuring that adjacent blocks read

from the source are distinct.

• A deterministic Random Bit Generator (RBG) seeded from the entropy source, with

a security-strength of 192 bits or more.

o The RBG SHALL comply with [ISO 18031], [NIST SP800-90], [ANSI X9.82]

and/or [SEC 1].

• A real-time clock (RTC) for which the state is protected within the HSM’s

cryptographic boundary.

• Secure storage for sensitive data. All keys and sensitive data SHALL include

integrity protection. Key separation and substitution prevention SHALL be assured

(for example using techniques from [ISO 11568-2]). See Prerequisites: SM (section

9.1) for permitted secure storage techniques.

• Tested implementations of all cryptographic primitives (section 6) required by this

specification.

• An authentic copy of the NIST P-384 domain parameters.

10.2 Prerequisites: KMC

The KMC SHALL have:

• KMCID (string of type IDENT), a unique name or identifier.

o The STSA SHOULD provide a registry service for KMC names.

• SWID (string of type IDENT), a software application and version identifier.

• A list of Approved HWID values. The KMC SHALL NOT negotiate a KEK with (or

transfer Vending Keys to) an SM unless that SM’s HWID is in the Approved list.

• A list of Approved FWID values. The KMC SHALL NOT negotiate a KEK with (or

transfer Vending Keys to) an SM unless that SM’s FWID is in the Approved list.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 36 OF 70

The STSA SHOULD maintain a Code of Practice detailing the requirements for approving

SM hardware and firmware (based on the SM Prerequisites in section 9.1).

The STSA SHOULD provide a registry service for Approved HWID and FWID values.

10.3 KMC Setup

Prior to accepting Vending Key Load Requests from SMs, the KMC SHALL:

• Generate an asymmetric digital signature key pair for the purpose of establishing

KEKs with SMs.

o The key pair SHALL be an ECC CDH key pair using the NIST P-384 domain

parameters and having a security-strength of at least 192 bits, and SHALL

be generated using an RBG having equivalent (or stronger) security-

strength.

o The key pair SHALL be generated and managed with respect to the

principles of split knowledge and dual control.

o The secret key SHALL be protected by an HSM.

• The key pair SHALL have a lifespan (Originator Usage Period) of at most 3 years

(consistent with [NIST SP800-57 PART 1]).

• The public key SHALL be published as an unsigned PUBKEY record (referred to as

PUBKEYKMC; see section 7.2.) with record type “PK.ECDH.1”. The Expiry field

SHALL reflect the end of the Originator Usage Period.

• A procedure to publish PUBKEYKMC SHALL be specified by KMC standards or

operational documentation. Each recipient of the PUBKEYKMC SHALL check that

the public key is not expired, and SHALL check the validity of the public key by

manually confirming the public key’s fingerprint over an independent

communication channel (either directly with the KMC or via a Trusted Third Party).

• When the KMC’s key pair expires, the KMC SHALL generate a new key pair and

publish the public key in the manner prescribed by this section.

10.3.1 Recommended process to generate and publish PUBKEYKMC

The following process is RECOMMENDED:

• The KMC selects a unique name KMCID (an IDENT).

• The KMC uses an HSM to generate and store a unique ECDSA key pair (dKMC,

QKMC) using the NIST P-384 domain parameters, in accordance with [ISO 14888-

3], [FIPS PUB 186-3], [ANSI X9.62] and/or [SEC 1].

o Generate a unique ECDH key pair (dKMC, QKMC) using GENERATE-KEY().

▪ dKMC is known only to the KMC HSM and SHALL NOT be revealed

to any other party under any circumstances.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 37 OF 70

• The KMC constructs a PKIDKMC with rectype “KMC.1”, Manufacturer set to SWID,

MID set to KMCID, and GNT the time at which dKMC was generated.

o Set GNT (type TIMESTAMP) to the current date according to the RTC.

o Set IDKMC = BUILD-RECORD(“KMCID.1”, ‘:’, 4, SWID, KMCID, GNT,

Fingerprint) where Fingerprint is computed from QKMC and other fields as

described for PKID (section 7.1).

• The KMC constructs a PUBKEYKMC with rectype “PK.ECDH.1” and Subject

PKIDKMC. Expiry is at most 3 years after the GNT. The Issuer and Signature are

empty.

o Compute the Expiry date of the key pair (dKMC, QKMC) as the GNT plus the

Originator Usage Period (maximum 3 years).

o Securely store dKMC, QKMC, Expiry and IDKMC. These values SHALL be in

secure storage and SHALL include integrity protection.

o Set PUBKEYKMC = BUILD-RECORD(“PK.ECDH.1”, ‘|’, 5, IDKMC, QKMCHEX,

Expiry, ∅, ∅) where QKMCHEX is encoded as described for PUBKEY (section

7.2).

• On demand by any SM Operator (vendors or meter manufacturer), the KMC sends

to the SM Operator the PUBKEYKMC in record-in-email format (Appendix C –

Record-in-email format).

• The SM Operator confirms the Fingerprint in the PKIDKMC via a second channel (for

example via the telephone or from the STSA website) then instructs their system to

use the PUBKEYKMC in a Vending Key Load Request (section 11).

10.4 KMC operation

During operation the KMC will periodically receive updated information from SM

Manufacturers and the STSA. Such updates SHALL be processed at the beginning of each

day of operation, before processing Vending Key Load Requests. The integrity of the

information SHALL be confirmed cryptographically or under dual control, and the

information stored for future use.

10.4.1 SM Manufacturer PUBKEYMAN updates

When the KMC receives notification that an SM Manufacturer’s public key certificate

PUBKEYMAN has been updated, the KMC should – with respect to the principle of dual

control – verify the integrity and authenticity of the certificate then introduce it to the KMC

HSM as a trusted certificate.

See the recommended process to generate and public PUBKEYMAN (section 8.1).

10.4.2 Approved HWID & FWID list updates

The KMC may receive from the STSA updated lists of Approved HWIDs and/or Approved

FWIDs. The format and validation of these lists is beyond the scope of this specification.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 38 OF 70

10.4.3 Supply Group management instructions

The KMC may receive from Supply Group owners (or prospective owners) requests to

register Supply Groups, update registration details, generate Vending Keys, or permit

Vending Keys to be sent to specific SMs (identified by MANUFACTURER and MID). The

format and validation of such requests is beyond the scope of this specification.

10.4.4 SM PUBKEY updates

The KMC will periodically receive files from SM Manufacturers containing updated SM

public key certificates (PUBKEYSM); see SM PUBKEY publication section 9.3.

The KMC SHALL validate each certificate using the KMC HSM and the Issuer’s public key

(an SM Manufacturer’s PUBKEYMAN previously introduced as described in section 10.3).

The KMC SHOULD check that each SM public key is unique. The certificate is stored in

the KMC’s database indexed by MANUFACTURER and MID, replacing any existing entry

for the same SM; the new certificate’s GNT (generation time) should be greater than that

of the existing certificate.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 39 OF 70

11 SM Vending Key Load Request

When an SM requires vending keys from a KMC that SM SHALL perform the following

process to create a Vending Key Load Request.

Input:

• PUBKEYKMC

Software or SM firmware process (error prefix “SM.1A” for software or “SM.1B” for

firmware):

• Parse PUBKEYKMC using PARSE-RECORD(“PKECDH.1”, ‘|’, 5, PUBKEYKMC), to

retrieve IDKMC, QKMCHEX and Expiry. Verify types of retrieved fields.

If parsing fails then FAIL(“SM.1A.1: Bad PUBKEY_KMC: failed to parse

PUBKEY_KMC;” ∥ cause).

If Expiry is less than the current time then FAIL(“SM.1A.2: Bad PUBKEY_KMC:

certificate is expired”).

SM firmware process (error prefix “SM.1B”):

• Input: IDKMC, QKMCHEX.

• If this process has completed successfully within the last 60 seconds then

FAIL(“SM.1B.1: Load Request speed limit enforced; try again in 60 seconds”).

• Set QKMC = Octet-String-to-Point(BASE16-DECODE(QKMCHEX))

On error FAIL(“SM.1B.2: Bad PUBKEY_KMC: invalid representation for public key

Q_KMC”).

• Parse IDKMC using PARSE-RECORD(“KMCID.1”, ‘:’, 4, IDKMC) to retrieve SWID,

KMCID, SerialKMC and FingerprintKMC. Verify types of retrieved fields.

If parsing fails then FAIL(“SM.1B.3: Bad PUBKEY_KMC: failed to parse ID_KMC;” ∥

cause).

Verify the FingerprintKMC using the retrieved fields and QKMC (see PKID, section 7.1),

or FAIL(“SM.1B.4: Bad PUBKEY_KMC: bad fingerprint in ID_KMC”).

• Retrieve from secure storage the values dSM, QSM and IDSM, and check their

integrity.

If the integrity check fails then FAIL(“SM.1B.5: Bad SM keys: stored key integrity

failure”).

• Parse IDSM using PARSE-RECORD(“SMID.1”, ‘:’, 4, IDSM) to retrieve

MANUFACTURER, MID, SerialSM and FingerprintSM. Verify types of retrieved fields.

If parsing fails then FAIL(“SM.1B.6: Bad SM keys: failed to parse ID_SM;” ∥ cause).

Verify the FingerprintSM using the retrieved fields and QSM (see PKID, section 7.1),

or FAIL(“SM.1B.7: Bad SM keys: bad fingerprint in ID_SM”).

• Retrieve NIST P-384 domain parameters and check their integrity.

If the integrity check fails the FAIL(“SM.1B.8: Bad SM keys: domain parameters

corrupt”).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 40 OF 70

• Use VALIDATE-KEY(QKMC) to provide assurance of validity of the KMC’s public key.

If validation fails then FAIL(“SM.1B.9: Bad PUBKEY_KMC: public key Q_KMC

failed full validation”).

• Use VALIDATE-KEY(QSM) to provide assurance of validity of the SM’s public key.

If validation fails then FAIL(“SM.1B.10: Bad SM keys: public key Q_SM failed full

validation”).

• Check that the SM has the correct value for its private key: using domain

parameters (q, FR, a, b, G, n, h) = NIST P 384, check that dSM is in the range [1, n-

1] and if so compute QSM’ = dSM G (scalar multiplication of a point on an elliptic

curve).

If dSM is out of range or QSM’ ≠ QSM then FAIL(“SM.1B.11: Bad SM keys: SM

private/public key mismatch”).

• Set TVPKMC to a TIMESTAMP the current time according to the SM’s RTC.

On error FAIL(“SM.1B.12: Error creating VKLOADREQ: RTC fault”).

• Generate an ephemeral key pair (dE, QE) using GENERATE-KEY().

Set QESTR to Point-to-Octet-String(QE).

On error FAIL(“SM.1B.13: Error creating VKLOADREQ: ephemeral key generation

fault”).

• Set ZE = ECC-CDH(dE, QKMC) then zeroise dE.

On error zeroise dE and FAIL(“SM.1B.14: Error creating VKLOADREQ: ephemeral

CDH fault”).

• Set ZS = ECC-CDH(dSM, QKMC).

On error zeroise ZE and FAIL(“SM.1B.15: Error creating VKLOADREQ: static CDH

fault”).

• Set Z = ZE ∥ ZS then zeroise ZE and ZS.

• Construct SharedInfo = LVCONCAT(“STS.KAA.1”, IDSM, IDKMC, TVPKMC).

• Set DKM = KDF-X963-SHA-384(Z, SharedInfo, 384) then zeroise Z.

On error zeroise Z and FAIL(“SM.1B.16: Error creating VKLOADREQ: KDF fault”).

• Set MacKey192 ∥ KEK192 = DKM384 then zeroise DKM. That is, take the leftmost 192

bits of DKM as MacKey, and the remaining 192 bits of DKM as KEK, then zeroise

DKM.

• Construct MacDataSM = LVCONCAT(“U_2”, IDSM, IDKMC, QESTR, TVPKMC, HWID,

FWID).

Then compute MacTagSM = HMAC-SHA-384-192(MacKey, MacDataSM).

On error zeroise MacKey and KEK, then FAIL(“SM.1B.17: Error creating

VKLOADREQ: MacTag_SM generation fault”).

• Construct MacDataKMC = LVCONCAT(“V2”, IDKMC, IDSM, TVPKMC, QESTR).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 41 OF 70

Then compute ExpMacTagKMC = HMAC-SHA-384-192(MacKey, MacDataKMC).

On error zeroise MacKey, KEK and MacTagSM, then FAIL(“SM.1B.18: Error creating

VKLOADREQ: ExpMacTag_KMC generation fault”).

• Set QEHEX (type 194H) = BASE16(QESTR)

Set MacTagSMHEX (type 48H) = BASE16(MacTagSM)

• Construct the Vending Key Load Request:

VKLOADREQSM = BUILD-RECORD(“VKLOAD.REQ.1”, ‘|’, 7, IDSM, IDKMC, TVPKMC,

HWID, FWID, QEHEX, MacTagSMHEX). See also VKLOADREQ (section 7.3).

• Securely store KEK, FingerprintKMC, TVPKMC, and ExpMacTagKMC. The KEK

SHALL be flagged with a ‘pending’ status that prevents it from being used by the

HSM until a valid VKLOADRESP is received. Storage SHALL include integrity

protection.

FingerprintKMC, TVPKMC, and ExpMacTagKMC will be used to verify the Key Load

Response from the KMC.

• Output VKLOADREQSM.

Software or manual process:

• Log the Load Request to the software audit log (the log SHOULD NOT contain

QEHEX, but SHOULD contain all other fields of VKLOADREQSM).

• Send the Vending Key Load Request VKLOADREQSM to the KMC in record-in-email

format (Appendix C – Record-in-email format).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 42 OF 70

12 KMC Vending Key Load Response

When a KMC receives a Vending Key Load Request (VKLOADREQ) from an SM, that KMC

SHALL perform the following process to authenticate the SM, establish a shared KEK, and

transfer Vending Keys to the SM.

Input:

• KMCID and IDKMC (both known to the KMC)

• VKLOADREQSM

Software process (error prefix “KMC.2A”):

• Log the Load Request to the KMC audit log (the log SHOULD NOT contain QEHEX,

but SHOULD contain all other fields of VKLOADREQSM).

• Parse VKLOADREQSM using PARSE-RECORD(“VKLOAD.REQ.1”, ‘|’, 7,

VKLOADREQSM) to retrieve REQ_IDSM, REQ_IDKMC, TVPKMC, HWID, FWID,

QEHEX, and MacTagSMHEX. Verify types of retrieved fields.

If parsing fails then FAIL(“KMC.2A.1: Bad VKLOADREQ: failed to parse

VKLOADREQ_SM;” ∥ cause).

• Parse REQ_IDKMC using PARSE-RECORD(“KMCID.1”, ‘:’, 4, REQ_IDKMC) to

retrieve REQ_KMCID. Verify types of retrieved fields.

If parsing fails then FAIL(“KMC.2A.2: Bad VKLOADREQ: failed to parse ID_KMC;” ∥

cause).

The Fingerprint of REQ_IDKMC is verified later by comparison against a known IDKMC.

• If REQ_KMCID ≠ KMCID then FAIL(“KMC.2A.3: Bad VKLOADREQ: key load

request sent to wrong KMC”).

• If REQ_IDKMC ≠ IDKMC then FAIL(“KMC.2A.4: Bad VKLOADREQ: key load request

used old PUBKEY_KMC”).

• Parse REQ_IDSM using PARSE-RECORD(“SMID.1”, ‘:’, 4, IDSM) to retrieve

MANUFACTURER, MID, and GNT. Verify types of retrieved fields.

If parsing fails then FAIL(“KMC.2A.5: Bad VKLOADREQ: failed to parse ID_SM;” ∥

cause).

The Fingerprint of REQ_IDSM is verified later by comparison against a known IDSM.

• Find in the KMC database the PUBKEYSM and LastTVPKMC associated with

MANUFACTURER and MID. This PUBKEYSM was securely distributed to the KMC

by the SM Manufacturer.

If no matching PUBKEY is found then FAIL(“KMC.2A.6: KMC data out of date: no

PUBKEY_SM found for SM; KMC may need update file from SM manufacturer”).

• Parse PUBKEYSM using PARSE-RECORD(“PKECDH.1”, ‘|’, 5, PUBKEYSM), to

retrieve IDSM and Issuer. Verify types of retrieved fields.

If parsing fails then FAIL(“KMC.2A.7: Error in KMC data: failed to parse

PUBKEY_SM;” ∥ cause).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 43 OF 70

• If REQ_IDSM ≠ IDSM then FAIL(“KMC.2A.8: KMC data out of date: mismatch

between requesting ID_SM and database; KMC may have old PUBKEY_SM”).

• Find in the KMC database the trusted PUBKEYMAN associated with the issuer. This

PUBKEYMAN was distributed to the KMC by the SM Manufacturer and introduced to

the KMC HSM under dual control (see sections 8 and 8.1).

If no matching PUBKEYMAN is found then FAIL(“KMC.2A.9: Error in KMC data:

unknown Issuer for PUBKEY_SM; cannot validate certificate”).

• If TVPKMC ≤ LastTVPKMC then FAIL(“KMC.2A.10: Bad VKLOADREQ: old timestamp

(TVP) in VKLOADREQ_SM; possible out-of-order request or replay”).

• The KMC SHOULD check that TVPKMC is within an acceptable window around the

current time (according to the system clock). The window SHOULD be software

configurable. A window of (now – 30 days) to (now + 3 days) is RECOMMENDED.

If TVPKMC is outside the acceptable window then FAIL(“KMC.2A.11: Bad

VKLOADREQ: timestamp (TVP) outside acceptable window; possible delayed or

future-dated request”).

• If HWID is not in the list of Approved HWIDs then FAIL(“KMC.2A.12: Bad

VKLOADREQ: SM hardware model not approved”).

• If FWID is not in the list of Approved FWIDs then FAIL(“KMC.2A.13: Bad

VKLOADREQ: SM firmware not approved”).

KMC HSM firmware process (error prefix “KMC.2B”):

• Input: PUBKEYMAN, PUBKEYSM, IDKMC, TVPKMC, HWID, FWID, QEHEX,

MacTagSMHEX.

• Check types of inputs TVPKMC (TIMESTAMP), HWID (IDENT), FWID (IDENT),

QEHEX (194H), and MacTagSMHEX (48H).

If type checking fails then FAIL(“KMC.2B.1: Bad VKLOADREQ: bad encoding in

input;” ∥ cause).

• Set QESTR = BASE16-DECODE(QEHEX).

Set QE = Octet-String-to-Point(QESTR).

If conversion fails then FAIL(“KMC.2B.2: Bad VKLOADREQ: bad representation for

Q_E”).

• Verify that PUBKEYMAN is a trusted certificate or FAIL(“KMC.2B.3: Error in KMC

data: certificate PUBKEY_MAN is not trusted”).

• Parse PUBKEYMAN using PARSE-RECORD(“PKECDSA.1”, ‘|’, 5, PUBKEYMAN), to

retrieve IDMAN, QMANHEX and ExpiryMAN. Verify types of retrieved fields.

If parsing fails then FAIL(“KMC.2B.4: Error in KMC data: failed to parse

PUBKEY_MAN;” ∥ cause).

Set QMAN = Octet-String-to-Point(BASE16-DECODE(QMANHEX)).

If conversion fails then FAIL(“KMC.2B.5: Error in KMC data: bad representation for

Q_MAN”).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 44 OF 70

Parse IDMAN using PARSE-RECORD(“SMMAN.1”, ‘:’, 4, IDMAN) to retrieve

Fingerprint and other fields. Verify types of retrieved fields.

If parsing fails then FAIL(“KMC.2B.6: Error in KMC data: failed to parse ID_MAN;” ∥

cause).

Verify the Fingerprint using the retrieved fields and QMAN (see PKID, section 7.1), or

FAIL(“KMC.2B.7: Error in KMC data: bad fingerprint in ID_MAN”).

• Parse PUBKEYSM using PARSE-RECORD(“PKECDH.1”, ‘|’, 5, PUBKEYSM), to

retrieve IDSM, QSMHEX, ExpirySM, Issuer and Signature. Verify types of retrieved

fields.

If parsing fails then FAIL(“KMC.2B.8: Error in KMC data: failed to parse

PUBKEY_SM;” ∥ cause).

Set QSM = Octet-String-to-Point(BASE16-DECODE(QSMHEX)).

If conversion fails then FAIL(“KMC.2B.9: Error in KMC data: bad representation for

Q_SM”).

Parse IDSM using PARSE-RECORD(“SMID.1”, ‘:’, 4, IDSM) to retrieve SerialSM,

Fingerprint and other fields. Verify types of retrieved fields.

If parsing fails then FAIL(“KMC.2B.10: Error in KMC data: failed to parse ID_SM;” ∥

cause).

Verify the Fingerprint using the retrieved fields and QSM (see PKID, section 7.1), or

FAIL(“KMC.2B.11: Error in KMC data: bad fingerprint in ID_SM”).

• If Issuer ≠ IDMAN then FAIL(“KMC.2B.12: Error verifying VKLOADREQ: cannot verify

SM certificate; wrong Issuer key presented”).

• If SerialSM > ExpiryMAN then FAIL(“KMC.2B.13: Error verifying VKLOADREQ: invalid

SM certificate; GNT postdates Issuer expiry”).

• If ExpirySM is less than the current time (from the HSM RTC) then FAIL(“KMC.2B.14:

Error verifying VKLOADREQ: SM certificate is expired”).

• Retrieve from secure storage the values dKMC, QKMC, ExpiryKMC and IDKMC, and check

their integrity.

If the integrity check fails then FAIL(“KMC.2B.15: Bad KMC keys: stored key

integrity failure”).

• If ExpiryKMC is less than the current time (from the HSM RTC) then

FAIL(“KMC.2B.16: Bad KMC keys: PUBKEY_KMC has expired”).

• Parse IDKMC using PARSE-RECORD(“KMCID.1”, ‘:’, 4, IDKMC) to retrieve SWID,

KMCID, GNT and Fingerprint. Verify types of retrieved fields.

If parsing fails then FAIL(“KMC.2B.17: Bad KMC keys: failed to parse ID_KMC;” ∥

cause).

Verify the Fingerprint using the retrieved fields and QKMC (see PKID, section 7.1), or

FAIL(“KMC.2B.18: Bad KMC keys: bad fingerprint in ID_KMC”).

• Retrieve NIST P-384 domain parameters and check their integrity.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 45 OF 70

If the integrity check fails the FAIL(“KMC.2B.19: Bad KMC keys: domain parameters

corrupt”).

• Use VALIDATE-KEY(QMAN) to provide assurance of validity of the SM

Manufacturer’s public key.

If validation fails then FAIL(“KMC.2B.20: Error in KMC data: public key Q_MAN

failed full validation”).

• Verify Signature of PUBKEYSM using QMAN as described in section 7.2.

If Signature is invalid then FAIL(“KMC.2B.21: Error verifying VKLOADREQ: invalid

signature on SM certificate”).

• Use VALIDATE-KEY(QSM) to provide assurance of validity of the SM’s public key.

If validation fails then FAIL(“KMC.2B.22: Error in KMC data: public key Q_SM failed

full validation”).

• Use VALIDATE-KEY(QKMC) to provide assurance of validity of the KMC’s public key.

If validation fails then FAIL(“KMC.2B.23: Bad KMC keys: public key Q_KMC failed

full validation”).

• Check that the KMC has the correct value for its private key: using domain

parameters (q, FR, a, b, G, n, h) = NIST P-384, check that dKMC is in the range [1,

n-1] and if so compute QKMC’ = dKMC G (scalar multiplication of a point on an elliptic

curve).

If dKMC is out of range or QKMC’ ≠ QKMC then FAIL(“KMC.2B.24: Bad KMC keys: KMC

private/public key mismatch”).

• Use VALIDATE-KEY(QE) to provide assurance of validity of the SM’s ephemeral

public key.

If validation fails then FAIL(“KMC.2B.25: Error verifying VKLOADREQ: public key

Q_E failed full validation”).

• Set ZE = ECC-CDH(dKMC, QE).

On error FAIL(“KMC.2B.26: Error verifying VKLOADREQ: ephemeral CDH fault”).

• Set ZS = ECC-CDH(dKMC, QSM).

On error zeroise ZE and FAIL(“KMC.2B.27: Error verifying VKLOADREQ: static

CDH fault”).

• Set Z = ZE ∥ ZS then zeroise ZE and ZS.

• Construct SharedInfo = LVCONCAT(“STS.KAA.1”, IDSM, IDKMC, TVPKMC).

• Set DKM = KDF-X963-SHA-384(Z, SharedInfo, 384) then zeroise Z.

On error zeroise Z and FAIL(“KMC.2B.28: Error verifying VKLOADREQ: KDF

fault”).

• Set MacKey192 ∥ KEK192 = DKM384 then zeroise DKM. That is, take the leftmost 192

bits of DKM as MacKey, and the remaining 192 bits of DKM as KEK, then zeroise

DKM.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 46 OF 70

• Construct MacDataSM = LVCONCAT(“U_2”, IDSM, IDKMC, QESTR, TVPKMC, HWID,

FWID).

Then compute ExpMacTagSM = HMAC-SHA-384-192(MacKey, MacDataSM).

On error zeroise MacKey and KEK, then FAIL(“KMC.2B.29: Error verifying

VKLOADREQ: ExpMacTag_SM generation fault”).

• If MacTagSMHEX ≠ BASE16(ExpMacTagSM) then zeroise MacKey and KEK, and

FAIL(“KMC.2B.30: Bad VKLOADREQ: bad key confirmation from SM”).

• Construct MacDataKMC = LVCONCAT(“V2”, IDKMC, IDSM, TVPKMC, QESTR).

Then compute MacTagKMC = HMAC-SHA-384-192(MacKey, MacDataKMC).

On error zeroise MacKey, KEK and MacTagSM, then FAIL(“KMC.2B.31: Error

creating VKLOADRESP: MacTag_KMC generation fault”).

• Set MacTagKMCHEX (type 48H) = BASE16(MacTagKMC)

• Construct the Vending Key Load Response:

VKLOADRESPKMC = BUILD-RECORD(“VKLOAD.RESP.1”, ‘|’, 4, IDKMC, IDSM,

TVPKMC, MacTagKMCHEX).

• Securely store KEK.

KEK will be used to wrap Vending Keys for transfer to the SM.

• Output VKLOADRESPKMC.

Mixed software and SM firmware process (error prefix “KMC.2C” for software or “KMC.2D”

for firmware):

• Store TVPKMC as LastTVPKMC associated with SM MANUFACTURER and MID, or

FAIL(“KMC.2C.1: Error creating VKLOADRESP: LAST_TVP_KMC storage error” ∥

cause).

• Create a Key Load File as a file-of-records (Appendix D – File-of-records format),

and add the VKLOADRESPKMC as the first record.

• Find all Vending Keys authorised for use with the SM (by MANUFACTURER and

MID).

For each authorised vending key VK:

o Use the KMC HSM to build a WRAPPED-KEY record (section 7.5) –

protected by the KEK – for the VK and associated attributes.

▪ The maximum permitted size of VK is 160 bits.

▪ For a given KEK, the KMC HSM SHALL ensure that all WRAPPED-

KEY records have distinct Nonces.

▪ Errors raised during this process SHOULD use the error prefix

“KMC.2D”.

o Append the WRAPPED-KEY to the Key Load File.

o Update the KMC database and audit log to reflect the distribution of the VK

to the SM (identified by MANUFACTURER and MID).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 47 OF 70

• Log the Load Response to the KMC audit log (the log SHOULD contain all fields of

VKLOADRESPKMC).

• Send the Key Load File to the SM (for example as an e-mail attachment).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 48 OF 70

13 SM KEK Confirmation and Vending Key Import

When an SM receives a Vending Key Load Response (VKLOADRESP) from a KMC, that

SM SHALL perform the following process to authenticate the KMC, confirm the shared

KEK, and import the Vending Keys to the SM.

Input:

• Key Load File (file-of-records) containing VKLOADRESPKMC and zero or more

WRAPPED-KEY records.

Mixed software and SM firmware process (error prefix “SM.3A” for software or “SM.3B” for

firmware):

• Parse Key Load File to recover VKLOADRESPKMC and WRAPPED-KEY records.

If parsing fails or if the file checksum is incorrect then FAIL(“SM.3A: Bad Key Load

File;” ∥ cause).

• The SM SHALL perform the following process to finish establishing the KEK:

o Input: VKLOADRESPKMC.

o Retrieve from secure storage the values KEK, FingerprintKMC, TVPKMC, and

ExpMacTagKMC (all stored while generating the VKLOADREQSM, section 12)

and check their integrity.

If the integrity check fails then FAIL(“SM.3B.1: Error verifying

VKLOADRESP: key agreement session integrity failure”).

o Set NOW to the current time according to the SM’s RTC.

o If TVPKMC < (NOW – 60 days) then FAIL(“SM.3B.2: Error verifying

VKLOADRESP: key agreement session timeout”).

o Parse VKLOADRESPKMC using PARSE-RECORD(“VKLOAD.RESP.1”, ‘|’,

4, VKLOADRESPKMC), to retrieve RESP_IDKMC, RESP_IDSM, RESP_TVPKMC

and MacTagKMCHEX. Verify types of retrieved fields.

If parsing fails then FAIL(“SM.3B.3: Bad VKLOADRESP: failed to parse

VKLOADRESP_KMC;” ∥ cause).

o Parse IDKMC using PARSE-RECORD(“KMCID.1”, ‘:’, 4, IDKMC) to retrieve

RESP_FingerprintKMC. Verify types of retrieved fields.

If parsing fails then FAIL(“SM.3B.4: Bad VKLOADRESP: failed to parse

ID_KMC;” ∥ cause).

o Retrieve from secure storage the IDSM, and check its integrity.

If the integrity check fails then FAIL(“SM.3B.5: Bad SM keys: stored key

integrity failure”).

o If RESP_IDSM ≠ IDSM then FAIL(“SM.3B.6: Destination error:

VKLOADRESP_KMC is for a different SM”).

o If RESP_FingerprintKMC ≠ FingerprintKMC then FAIL(“SM.3B.7: Destination

error: VKLOADRESP_KMC is for a different key agreement session (with a

different KMC)”).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 49 OF 70

This partial check on IDKMC is not required for protocol security – its presence

helps to identify and correct some Vending Key Load Response

management errors.

o If RESP_TVPKMC ≠ TVPKMC then FAIL(“SM.3B.8: Bad VKLOADRESP: wrong

timestamp (TVP) in VKLOADRESP_KMC; possible expired or out-of-order

response”).

o If MacTagKMCHEX ≠ BASE16(ExpMacTagKMC) then FAIL(“SM.3B.9: Bad

VKLOADRESP: bad key confirmation from KMC”).

o Zeroise TVPKMC and ExpMacTagKMC from secure storage.

Update the KEK status flag to indicate that the KEK may be used.

IDKMC or elements thereof are not security sensitive and may be retained.

o Output a success indicator.

• For each Vending Key required by the SM Operator, the protected Vending Key (a

WRAPPED-KEY record) SHALL be imported into the SM:

o The WRAPPED-KEY record may be parsed by software or by the SM.

o The SM SHALL use AES-192-CCMDEC(KEK, Nonce, Attributes,

ProtectedKey) to verify the integrity of the Vending Key and Attributes and

to decrypt the Vending Key (maximum size 160 bits).

o The SM SHALL protect the cleartext value of the Vending Key and SHALL

ensure that this value is not exposed outside the cryptographic boundary

under any circumstances.

o The SM SHALL protect the association between the Vending Key and its

Attributes, and SHALL ensure that Attributes and not substituted or

modified.

o The SM SHALL securely store the Vending Key and associated Attributes.

See Prerequisites: SM (section 9.1) for permitted secure storage

techniques.

• Once all required Vending Keys have been imported the SM Operator or operating

software SHALL instruct the SM that key transfer is complete:

o The SM SHALL zeroise the KEK, preventing further WRAPPED-KEYs from

being imported.

o The SM MAY retain IDKMC or elements thereof to assist in Vending Key

management.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 50 OF 70

14 End-of-life and key compromise procedures

When any participating entity in the STS Key Management infrastructure reaches end-of-

life, or the secret key material of that entity is compromised or suspected to be

compromised, certain actions must be taken to ensure the integrity of the Key Management

System.

This section details the essential aspects of end-of-life and key compromise procedures for

various entities. All SM Manufacturers and KMCs SHALL have documented procedures

for handling end-of-life and key compromise. Such procedures SHALL include at minimum

the relevant actions specified in this section. KMCs SHALL require SM Operators to follow

documented SM procedures as a condition of service.

14.1 SM Manufacturer

14.1.1 End-of-life

• The SM Manufacturer SHALL destroy its private ECDSA key dMAN.

• The Manufacturer SHALL notify the STSA and all KMCs that it will not be producing

further SMs.

• KMCs SHALL NOT accept further PUBKEYSM updates from the SM Manufacturer.

• There is no need to revoke the Manufacturer’s public key certificate PUBKEYMAN –

existing SMs can continue to establish KEKs with the KMC until they reach end-of-

life or the Manufacturer’s private ECDSA key dMAN is compromised.

14.1.2 Storage Master Key (SMK) or private ECDSA key (dMAN) compromise

• The SM Manufacturer MAY create a self-signed key revocation certificate using its

private ECDSA key dMAN. The details of such a revocation certificate are beyond

the scope of this document.

• The Manufacturer SHALL destroy its private ECDSA key dMAN.

• The Manufacturer SHALL notify the STSA of the (suspected) key compromise.

• The Manufacturer SHALL notify all KMCs that they can no longer trust the certificate

PUBKEYMAN. KMCs SHALL revoke trust in the certificate.

• The Manufacturer SHALL follow the Manufacturer Setup process (section 8) to

generate and distribute a new PUBKEYMAN-NEW.

• The Manufacturer SHALL investigate the integrity of its database of PUBKEYSM

certificates and SHALL publish new certificates (signed by the Manufacturer’s new

private key) for those PUBKEYSM records found to be trustworthy (that is, existing

certificates will be re-signed).

14.2 Security Module

14.2.1 End-of-life

• The SM Operator SHALL follow the documented Manufacturer procedure to destroy

all secret data in the SM.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 51 OF 70

• The SM Operator SHALL notify the SM Manufacturer (possibly via a KMC) that the

SM has been decommissioned.

• The SM Manufacturer SHALL publish a suitable revocation certificate to all KMCs.

See SM PUBKEY publication (section 9.3).

14.2.2 Private ECC CDH key (dSM) compromise

• The SM Operator SHALL follow the documented Manufacturer procedure to destroy

all secret data in the SM.

• The Operator SHALL decommission the SM (see 14.2.1) or return the SM to the

Manufacturer for maintenance.

• The Operator SHALL notify all KMCs of the compromise, and SHALL include logs

of legitimate Vending Key Load Requests sent by the SM (at minimum logs of all

Load Requests since the suspected date of compromise).

• All affected KMCs SHALL review their audit logs in conjunction with the logs of

legitimate Load Requests supplied by the SM Operator to determine if unauthorised

Vending Key Load Requests have been processed.

o If unauthorised requests have been processed then the KMC(s) SHALL

identify the affected Vending Keys and treat them as compromised (see 0).

o If no unauthorised requests have been processed then no further action is

required. The secrecy of Vending Keys is still protected by the SM’s

cryptographic boundary and the forward secrecy property of the KEK

agreement protocol.

14.2.3 Storage Master Key (SMK) or Vending Key (VK) compromise

• The SM Operator SHALL determine the originating KMCs of the compromised

VK(s).

• The SM Operator SHALL notify the STSA and originating KMCs of the compromise.

• KMCs SHALL proceed according to their procedures for VK compromise (section

14.3.2).

14.3 Key Management Centre

14.3.1 End-of-life

• The KMC SHALL notify the STSA and all SM Manufacturers that it will be ceasing

operation.

• The KMC SHALL send a notice to all SM Operators that use its services. Operators

SHOULD NOT make further use of the KMC’s certificate PUBKEYKMC.

• The KMC SHALL send a notice to all SG Owners that rely on its services. It will be

necessary to migrate Supply Group keys and data to another KMC. The details of

such a migration are beyond the scope of this document.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 52 OF 70

• The KMC SHALL destroy its private ECC CDH key dKMC, its Storage Master Key

(SMK), all key components and keys backups, and all data backups.

14.3.2 Key compromise

The compromise or suspected compromise of keys protected by or used by the KMC has

a broad impact on the STS Key Management infrastructure, and is beyond the scope of

this document.

KMC standards SHALL specify procedures or procedural requirements to handle the event

in which any of the following keys are compromised or suspected to be compromised:

• The KMC’s ECC CDH private key (dKMC);

• The KMC’s Storage Master Key (SMK) or any component thereof;

• One or more Vending Keys (VKs) for Supply Groups served by the KMC.

Such procedures SHALL include notification of the STSA, affected SG Owners, and

affected SM Operators.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 53 OF 70

15 Bibliography

[ANSI X9.62] ANS X9.62-2005 Public Key Cryptography for the Financial

Services Industry – The Elliptic Curve Digital Signature Algorithm

(ECDSA)

[ANSI X9.63] X9.63-2001 Public Key Cryptography for the Financial Services

Industry – Key Agreement and Key Transport Using Elliptic

Curve Cryptography

[ANSI X9.82] ANSI X9.82-1:2006 Random Number Generation – Part 3:

Deterministic Random Bit Generator Mechanisms

[ANSI X9.102] ANSI X9.102:2008 Symmetric Key Cryptography For the

Financial Services Industry – Wrapping of Keys and Associated

Data, June 2008.

[CM10] Chen & Mitchell, “Parsing ambiguities in authentication and key

establishment protocols”, 2010

[CRC-CAT] CRC RevEng: Catalogue of parametrised CRC algorithms

(MODBUS)

HTTP://REVENG.SOURCEFORGE.NET/CRC-

CATALOGUE/16.HTM#CRC.CAT.MODBUS

[FIPS PUB 140-2] Security Requirements for Cryptographic Modules, May 2001

HTTP://CSRC.NIST.GOV/PUBLICATIONS/FIPS/FIPS140-2/FIPS1402.PDF

[FIPS PUB 180-4] Secure Hash Standard (SHS), March 2012

HTTP://CSRC.NIST.GOV/PUBLICATIONS/FIPS/FIPS180-4/FIPS-180-

4.PDF

[FIPS PUB 197] Advanced Encryption Standard (AES), November 2001

HTTP://CSRC.NIST.GOV/PUBLICATIONS/FIPS/FIPS197/FIPS-197.PDF

[FIPS PUB 198-1] The Keyed-Hash Message Authentication Code (HMAC), July

2008

HTTP://CSRC.NIST.GOV/PUBLICATIONS/FIPS/FIPS198-1/FIPS-198-

1_FINAL.PDF

[ISO 9798-4] ISO/IEC 9798-4:1999 Information technology – Security

techniques – Entity authentication – Part 4: Mechanisms using a

cryptographic check function

[ISO 10116] ISO/IEC 10116:2006 Information technology – Security

techniques – Modes of operation for an n-bit block cipher

[ISO 11568-2] ISO 11568-2:2005 Banking – Key management (retail) – Part 2:

Symmetric ciphers, their key management and life cycle

[ISO 11770-2] ISO/IEC 11770-2:2007 Information technology – Security

techniques – Key management – Part 2: Mechanisms using

symmetric techniques

http://reveng.sourceforge.net/crc-catalogue/16.htm#crc.cat.modbus
http://reveng.sourceforge.net/crc-catalogue/16.htm#crc.cat.modbus
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 54 OF 70

[ISO 13569] ISO/TR 13569:2005 Financial services – Information security

guidelines

[ISO/TR 14742] ISO/TR 14742:2010 Financial services – Recommendations on

cryptographic algorithms and their use, July 2010

[ISO 18031] ISO/IEC 18031:2011 Information technology – Security

techniques – Random bit generation

[ISO 19790] ISO/IEC 19790:2012 Information technology – Security

techniques – Security requirements for cryptographic modules

[ITU X.680] Information technology – Abstract Syntax Notation One (ASN.1):

Specification of basic notation, July 2002

HTTP://WWW.ITU.INT/ITU-

T/STUDYGROUPS/COM17/LANGUAGES/X.680-0207.PDF

[Lammert] On-line CRC calculation and free library

HTTP://WWW.LAMMERTBIES.NL/COMM/INFO/CRC-CALCULATION.HTML

[NIST SP800-38C] NIST Special Publication 800-38C Recommendation for Block

Cipher Modes of Operation: the CCM Mode for Authentication

and Confidentiality, July 2007

HTTP://CSRC.NIST.GOV/PUBLICATIONS/NISTPUBS/800-38C/SP800-

38C_UPDATED-JULY20_2007.PDF

[NIST SP800-57

Part 1]

NIST Special Publication 800-57 Recommendation for Key

Management – Part 1: General (Revised), March 2007

[NIST SP800-90] NIST Special Publication 800-90 Recommendation for Random

Number Generation Using Deterministic Random Bit Generators,

January 2012

HTTP://CSRC.NIST.GOV/PUBLICATIONS/NISTPUBS/800-90A/SP800-

90A.PDF

[NIST SP800-131A

]

NIST Special Publication 800-131A Transitions:

Recommendation for Transitioning the Use of Cryptographic

Algorithms and Key Lengths, January 2011

[NIST SP800-152

DRAFT]

Requirements and Desirable Features of U.S. Federal

Cryptographic Key Management Systems, DRAFT August 2012

[NISTIR 7628] Guidelines for Smart Grid Cyber Security: Vol. 1, Smart Grid

Cyber Security Strategy, Architecture, and High-Level

Requirements, August 2010

[PCI HSM] Payment Card Industry (PCI) PIN Transaction Security (PTS)

Hardware Security Module (HSM) Security Requirements,

Version 2.0, May 2012

[POSIX RE] Wikipedia: Regular expression (POSIX)

HTTP://EN.WIKIPEDIA.ORG/WIKI/REGULAR_EXPRESSION#POSIX

http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.lammertbies.nl/comm/info/crc-calculation.html
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://en.wikipedia.org/wiki/Regular_expression#POSIX

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 55 OF 70

[RFC 2104] HMAC: Keyed-Hashing for Message Authentication, February

1997

HTTP://WWW.IETF.ORG/RFC/RFC2104.TXT

[RFC 2119] Key words for use in RFCs to Indicate Requirement Levels,

March 1997

HTTP://WWW.IETF.ORG/RFC/RFC2119.TXT

[RFC 2144] The CAST-128 Encryption Algorithm, May 1997

HTTP://WWW.IETF.ORG/RFC/RFC2144.TXT

[RFC 2994] A Description of the MISTY1 Encryption Algorithm, November

2000

HTTP://TOOLS.IETF.ORG/HTML/RFC2994

[RFC 3610] Counter with CBC-MAC (CCM), September 2003

HTTP://WWW.IETF.ORG/RFC/RFC3610.TXT

[RFC 4648] The Base16, Base32, and Base64 Data Encodings, October

2006

HTTP://TOOLS.IETF.ORG/HTML/RFC4648#SECTION-8

[RFC 5869] HMAC-based Extract-and-Expand Key Derivation Function

(HKDF), May 2010

HTTP://TOOLS.IETF.ORG/HTML/RFC5869

[ROCKSOFT] A PAINLESS GUIDE TO CRC ERROR DETECTION

ALGORITHMS, August 1993

HTTP://WWW.ROSS.NET/CRC/DOWNLOAD/CRC_V3.TXT

[SANS 1524-6-10] SANS 1524-6-10:2010 Electricity payment systems – Part 6-10:

Interface standards – Online vending server – Vending clients

[SEC 1] SEC1: Elliptic Curve Cryptography version 2.0, May 2009

HTTP://WWW.SECG.ORG/DOWNLOAD/AID-780/SEC1-V2.PDF

[SEC 2] SEC 2: Recommended Elliptic Curve Domain Parameters

version 2.0, January 2010

HTTP://WWW.SECG.ORG/DOWNLOAD/AID-784/SEC2-V2.PDF

[STS COP 402-1] STS COP 402-1:2011 Standard Transfer Specification (STS) –

CODE OF PRACTICE FOR THE MANAGEMENT OF TOKEN ID

ROLLOVER

[W:ASC] Wikipedia: ASCII

HTTP://EN.WIKIPEDIA.ORG/WIKI/ASCII

[W:BCD] Wikipedia: Binary-coded decimal

HTTP://EN.WIKIPEDIA.ORG/WIKI/BINARY-CODED_DECIMAL

[W:CERT] Wikipedia: Public key certificate

HTTP://EN.WIKIPEDIA.ORG/WIKI/PUBLIC_KEY_CERTIFICATE

[W:EBNF] Wikipedia: Extended Backus-Naur Form

HTTP://EN.WIKIPEDIA.ORG/WIKI/EXTENDED_BACKUS%E2%80%93N

AUR_FORM

http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2144.txt
http://tools.ietf.org/html/rfc2994
http://www.ietf.org/rfc/rfc3610.txt
http://tools.ietf.org/html/rfc4648#section-8
http://tools.ietf.org/html/rfc5869
http://www.ross.net/crc/download/crc_v3.txt
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-784/sec2-v2.pdf
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Public_key_certificate
http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 56 OF 70

[W:END] Wikipedia: Endianness

HTTP://EN.WIKIPEDIA.ORG/WIKI/ENDIANNESS

[W:HEX] Wikipedia: Hexadecimal

HTTP://EN.WIKIPEDIA.ORG/WIKI/HEXADECIMAL

[W:LEX] Wikipedia: Lexicographical order

HTTP://EN.WIKIPEDIA.ORG/WIKI/LEXICOGRAPHICAL_ORDER

[W:OCT] Wikipedia: Octet

HTTP://EN.WIKIPEDIA.ORG/WIKI/OCTET_(COMPUTING)

[W:SHA-1] Wikipedia: SHA-1

HTTP://EN.WIKIPEDIA.ORG/WIKI/SHA-1

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Lexicographical_order
http://en.wikipedia.org/wiki/Octet_(computing)
http://en.wikipedia.org/wiki/SHA-1

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 57 OF 70

16 Appendix A – example VKLOADRESP (informative)

The VKLOADRESP consists of a single record type record (type VKLOAD.RESP.1)

followed by one or more key records (type KEY.1), and terminated with a HMAC of the

entire record (#2FC…..).

A sample VKLOADRESP is shown below (5 keys included). Note that all records are fully

described in the relevant sections of this specification.

VKLOAD.RESP.1|KMCID.1:Prism:K0001:20160418T121717Z:52204DE9EEFA6EB8:E7B

F|SMID.1:Prism:94000507:20160506T095338Z:F184871DC4F23CB0:1F8C|20160506T1

22741Z|C9A5161F864E1978435A2CEAA611930F37824EDCE6252CEC|71CC

KEY.1|A8556C52BA3345996C1551DC|ACT20160425T114321Z;BDT19930101T000000

Z;CLM44fa0000;CLU0;DKG02;EXP20170506T215959Z;IUT20160903T102658Z;KCV17

D819;KEN255;KRN1;KTC2;SBMFFFF;SGC0000112233;SGNSURELOAD KMC TEST

VUDK 1;ULM1000;|849B9665C2BFFB75BF58629A0A057D528888559693DB293A|8F06

KEY.1|E1F557BEE6442E0FC5747E6B|ACT20160504T220000Z;BDT19930101T000000

Z;CLM44fa0000;CLU0;DKG02;EXP20170506T215959Z;IUT20160903T102658Z;KCV70

7844;KEN255;KRN2;KTC1;SBMFFFF;SGC0000112233;SGNSURELOAD KMC TEST

VUDK

1;ULM1000;|C4967CD420827099DE6A1E5E670BA559AE6A3BC034BA090E|5D2D

KEY.1|49C0495A0A6C26351C44A0CB|ACT20160430T220000Z;BDT19930101T000000

Z;CLM44fa0000;CLU0;DKG02;EXP20170506T215959Z;IUT20160903T102658Z;KCV3A

3273;KEN255;KRN3;KTC1;SBMFFFF;SGC0000112233;SGNSURELOAD KMC TEST

VUDK 1;ULM1000;|DC29A26BBB03D794649E45856B8031B57323A090341CB747|576D

KEY.1|5EE5F985A1186F8A5DD1175F|ACT20140813T000000Z;BDT19930101T000000

Z;CLM461c4000;CLU0;DKG02;EXP20170506T215959Z;IUT20160903T102658Z;KCVC3

3F45;KEN255;KRN1;KTC2;SBM0001;SGC0000123456;SGNACME;ULM10000;|7865DC

2B97755CFFA8B5A83C34D1AB8EB6955666F5C78A0B|25EB

KEY.1|6EE438A953F883942F60DDD8|ACT20160502T220000Z;BDT19930101T000000

Z;CLM461c4000;CLU0;DKG02;EXP20170506T215959Z;IUT20160903T102658Z;KCV55

E354;KEN255;KRN2;KTC1;SBM0001;SGC0000123456;SGNACME;ULM10000;|9918600

913859398D044C8D1E86A10EA5ECBF675E861862D|19FA

#2FC215350D8A718CD22783F5D81F8E33F6B46337

16.1.1 Record Type VKLOAD.RESP.1

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 58 OF 70

VKLOAD.RESP.1|KMCID.1:Prism:K0001:20160418T121717Z:52204DE9EEFA6EB8:E7B

F|SMID.1:Prism:94000507:20160506T095338Z:F184871DC4F23CB0:1F8C|20160506T1

22741Z|C9A5161F864E1978435A2CEAA611930F37824EDCE6252CEC|71CC

Table 3- VKLOADRESP.1 record

Field Content

Record type VKLOAD.RESP.1

KMCID.1, manufacturer KMCID.1:Prism:K0001

GNT - generation time of the key pair 20160418T121717Z

Fingerprint 52204DE9EEFA6EB8

CRC of preceding record E7BF

SMID.1, manufacturer, SMID SMID.1:Prism:94000507

GNT - generation time of the key pair 20160506T095338Z

Fingerprint F184871DC4F23CB0

CRC of preceding record 1F8C

TVP - time variant parameter from

VKLOADREQ

20160506T122741Z

MACTAG - KMC key confirmation C9A5161F864E1978435A2CEAA61

1930F37824EDCE6252CEC

CRC of entire record 71CC

16.1.2 Record type Key.1

KEY.1|A8556C52BA3345996C1551DC|ACT20160425T114321Z;BDT19930101T000000

Z;CLM44fa0000;CLU0;DKG02;EXP20170506T215959Z;IUT20160903T102658Z;KCV17

D819;KEN255;KRN1;KTC2;SBMFFFF;SGC0000112233;SGNSURELOAD KMC TEST

VUDK 1;ULM1000;|849B9665C2BFFB75BF58629A0A057D528888559693DB293A|8F06

Table 4- Record type KEY.1

Field Content

Record type KEY.1

Unique NONCE A8556C52BA3345996C1551DC

Activation date of the vending key ACT20160425T114321Z

Base Date BDT19930101T000000Z

Currency Credit Limit CLM44fa0000

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 59 OF 70

Cluster number CLU0

DKGA number DKG02

Key expiry date EXP20170506T215959Z

Key issued until IUT20160903T102658Z

Key Check Value KCV17D819

Key Expiry Number KEN255

Key Revision Number KRN1

Key type KTC2

Subclass bitmap SBMFFFF

SGC Number SGC0000112233

SGC Name SGNSURELOAD KMC TEST VUDK 1

Unit credit limit ULM1000

Protected (encrypted) vending key 849B9665C2BFFB75BF58629A0A057D528888559

693DB293A

CRC of entire record 8F06

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 60 OF 70

17 Appendix B – Vending Key attributes (normative)

The following table defines the attribute card names – and encoding of corresponding

values – that may appear in the Attributes field of a WRAPPED-KEY record (section 7.5).

An Attributes field SHALL contain all cards (names) for which the Presence is indicated as

“Required”, and MAY contain any names for which the Presence is “Optional”. The field

MAY contain names other than those defined in this Appendix (the presence of which

MUST be optional).

Table 5 - Vending Key Attributes

Name Content

type

Presence Description

ACT TIMESTAMP Required Activation Time: the date and time at which this

Vending Key becomes active for the SGC.

In spite of the implications of [IEC 62055-41]

(section 6.5.2.5) the POS SHALL select the

CurrentKey as the Vending Key in a supply group

having the most recent Activation Time (that is,

the highest Activation Time that is in the past);

this behaviour is consistent with Legacy KMC

practice and [SANS 1524-6-10] (in which this field

is known as “EffectiveDate”).

BDT TIMESTAMP Required Base Date: the date associated with a TID value

of zero, as specified in [STS COP 402-1].

DKG 2D Required Decoder Key Generation Algorithm from [IEC

62055-41] section 6.1.4.

IUT TIMESTAMP Optional Issued Until: a date and time after which the SM

will prevent the key from being used for token

encryption.

KEN 3D Required Key Expiry Number from [IEC 62055-41] section

6.1.10. The KEN must be in the range 0-255 and

is interpreted relative to the Base Date (BDT).

KRN 1D Required Key Revision Number from [IEC 62055-41] section

6.1.10.

KTC 1D Required Key Type (KT) code from [IEC 62055-41] Table 24

(section 6.5.2.2.1), indicating whether the key is a

VUDK, VCDK or VDDK.

SGC 10D Required Supply Group Code from [IEC 62055-41] section

6.1.6.

This specification requires 10-digit SGCs; left-pad

shorter SGCs with zero characters (“0”) to make

then 10 digits long.

SGN 1-99P Optional Supply Group Name, a human-readable name for

the supply group.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 61 OF 70

18 Appendix C – Record-in-email format (normative)

This format is intended to represent a single record (section 5.8) within the body of an e-

mail message. The record is easily identified and extracted by a human operator or by

software.

Given a record REC with record type rectype, a record-in-email is rendered as follows:

--STS:rectype BEGINS--

REC wrapped to 64 characters or less per line

--STS:rectype ENDS--

The starting guard is the octet string

x’2D2D5354533A ∥ rectype ∥ x’20424547494E532D2D, and the ending guard is

x’2D2D5354533A ∥ rectype ∥ x’20454E44532D2D.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 62 OF 70

19 Appendix D – File-of-records format (normative)

This format is intended to represent one or more records (section 5.8) in a text file. The file

is easily parsed by software and includes an insecure checksum to detect accidental data

corruption.

A text file is an ordered sequence of lines. Each line contains only Printable ASCII

characters and is terminated by a single End-Of-Line (EOL) character LF (x’0A, often given

as ‘\n’ in source code) or by the End-Of-File (EOF) condition. The EOL may be omitted

from the last line of the file.

A file-of-records is a text file in which each line is either a record, a comment, or empty

(whitespace). The last line in the file is a comment containing a BASE16-encoded SHA-1

[W:SHA-1] checksum over the preceding lines (including EOL characters), and must not

have an EOL character.

A file-of-records is fully specified by the following production, given in Extended Backus-

Naur Form [W:EBNF]:

File-of-records = Content, “#”, Checksum ;

Content = Line, LF, { Line, LF } ;

Checksum = BASE16(SHA-1(Content)) ;

Line = Record | Comment | Empty ;

LF = x’0A ;

Record = Printable, { Whitespace }

Comment = “#”, Printable ;

Empty = { Whitespace } ;

Whitespace = x’20 | x’08 | x’0D ;

Note that record lines may have trailing whitespace, which should be removed before

parsing the record.

http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
http://en.wikipedia.org/wiki/SHA-1

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 63 OF 70

20 Appendix E – Summary of cryptographic primitives and

standards (informative)

The following table summarises all cryptographic primitives (algorithms) employed by this

specification, and indicates the standards to which they conform:

Table 6 - Cryptographic Primitives

Algorithm Classification Mode of
Operation

Key Key Length
(bits)

Security-
strength

(bits)

Standards1

MISTY1 64-bit Block
Cipher

ECB Decoder Key
(DK)

128 128 ISO 18033-3

CAST-128 64-bit Block
Cipher

ECB Decoder Key
(DK)

128 128 ISO 18033-3
RFC 2144

ECB mode for
any block

cipher
algorithm

n-bit Block
Cipher mode
of operation

ECB Determined by Block Cipher.
ECB provides confidentiality only, with

weaker guarantees for multi-block encryption.

ISO 10116
NIST SP800-

38A

KDF108-
Feedback-

HMAC-SHA-
384

Symmetric Key
Derivation
Function

Feedback
mode (iterated

PRF over
HMAC-SHA-

384)

Vending Key
(VK)

160 160
(up to 192 with

192-bit key)

NIST SP800-
108

HMAC-SHA-
384-192

Pseudorandom
Function (PRF)

N/A HMAC with SHA-384 has a maximum key
length of 1023 bits, and a security-strength of

up to 192 or 384 bits (depending on
application).

RFC 4868
ISO 9797-2
FIPS PUB

198-1

HMAC Dedicated
Message

Authentication
Code (MAC)

Operates over
a digest (hash)

function

Maximum key length depends on digest
function. Security-strength depends on key

length.

ISO 9797-2
FIPS PUB

198-1
RFC 2104

SHA-384 Digest function
(hash)

N/A Non-keyed function. Security-strength is 192
bits for digital signatures and MAC, 384 bits

for KDF.

ISO 10118-3
FIPS PUB

180-4

AES-192 128-bit Block
Cipher

CCM Key Exchange
Key (KEK)

192 192
(integrity

limited to 128)

ISO 18033-3
FIPS PUB 197

CCM mode for
any block

cipher
algorithm

n-bit Block
Cipher mode
of operation

CCM
(Nonce-based
Authenticated

Encryption
with Additional

Data)

Determined by Block Cipher.
CCM provides confidentiality and integrity
under the assumption that the nonce is not

reused with a given key.

ISO 19772
NIST SP800-

38C
RFC 3610

ECC CDH Asymmetric
key agreement

primitive

Domain
parameters:
NIST P-384;
KDF-X963

(dSM, QSM)
and

(dKMC, QKMC)

384 192 ISO 11770-3
ANSI X9.63

NIST SP800-
56A

SEC 1

1-Pass Unified
Model C(1e,

2s)

Asymmetric
key agreement

scheme

Operates over
ECC CDH
primitive

2 static (as for
ECC CDH)

plus
1 ephemeral
for SM: (dE,

QE)

384 192 NIST SP800-
56A

ANSI X9.63
ISO 11770-3

1 Normative standards are in bold.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 64 OF 70

Algorithm Classification Mode of
Operation

Key Key Length
(bits)

Security-
strength

(bits)

Standards1

ECDSA Digital
signature

Domain
parameters:
NIST P-384;

SHA-384

(dMAN, QMAN) 384 192 ISO 14888-3
ANSI X9.62
FIPS PUB

186-3
SEC 1

P-384 for any
ECC operation

ECC Domain
Parameters

P-384 Also known as “ansix9p384r1” and
“secp384r1”.

ECC operations in this domain can provide
up to 192 bits of security.

FIPS PUB
186-3

ANSI X9.62
SEC 2

KDF-X963-
SHA-384

Key Derivation
Function (KDF)

Counter mode
(iterated PRF

over SHA-384)

Shared Secret
from ECC

CDH

Depends on
ECC CDH

(minimum 192
bits entropy

required)

192 bits ISO 11770-3
ANSI X9.63

SEC 1

The following table indicates alignment of cryptographic primitives employed by this

specification with various standards bodies and projects, with respect to the context or

purpose of use:

Table 7 - Alignment of cryptographic primitives

Algorithm ISO NIST NISTIR 7628
Smart Grid1

SP800-152
Federal KMC

Others

MISTY1, ECB
for token

encryption

ISO/TR 14742
ISO 18033-3
ISO 10116 MISTY1 and CAST-128 are not approved

 by any NIST or FIPS standard.

RFC 2994
Approved by
NESSIE &

CRYPTREC

CAST-128, ECB
for token

encryption

ISO/TR 14742
ISO 18033-3
ISO 10116

RFC 2144
Approved by

CSEC

KDF108-
Feedback-HMAC-

SHA-384 with
LVCONCAT

for symmetric key
derivation

No relevant
standard

HMAC: ISO 9797-2
and ISO/TR 14742

SHA-384: ISO
10118-3 and

ISO/TR 14742

NIST SP800-
131A

NIST SP800-108
FIPS PUB 198-1
FIPS PUB 180-4

Formatting
function

complies fully

Approved
beyond 2030

Exceeds
“Augmented”
security; not
interoperable

Equivalent to
RFC 5869; not
interoperable

AES-192, CCM
for authenticated

encryption and key
wrapping

ISO 18033-3
ISO 19772

AES: ISO/TR 14742

NIST SP800-
131A

FIPS PUB 197
NIST SP800-

38C

Approved
beyond 2030

Exceeds
“Augmented”
security; not
interoperable

ANSI X9.102
Approved by
NESSIE &

CRYPTREC

ECC CDH C(1e,
2s)

for asymmetric
shared secret

agreement

ISO 11770-3 NIST SP800-
131A

NIST SP800-
56A (Set ED)

Approved
beyond 2030,

192-bit
security

Exceeds
“Augmented”
security; not
interoperable

NSA Suite B
ANSI X9.63

SEC 1

ECDSA
For digital

signature in PK
certificates

ISO/TR 14742
ISO 14888-3

NIST SP800-
131A

FIPS PUB 186-3

Approved
beyond 2030

Exceeds
“Augmented”;

meets
‘Desirable’

NSA Suite B
ANSI X9.62

SEC 1

1 The NIST 7628 requirements for approval beyond 2030 are based on NIST SP800-57 and NIST

SP800-131.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 65 OF 70

Algorithm ISO NIST NISTIR 7628
Smart Grid1

SP800-152
Federal KMC

Others

NIST P-384
domain

parameters

ISO/TR 14742
No ISO standard
specifies curves

NIST SP800-
131A FIPS PUB

186-3

Approved
beyond 2030

Exceeds
“Augmented”
security; not
interoperable

NSA Suite B
ANSI X9.62

SEC 2

KDF-X963-SHA-
384 with

LVCONCAT
for key derivation

from
asymmetrically
shared secret

ISO 11770-3 NIST SP800-
131A

NIST SP800-135
or

NIST SP800-
131A;

Meets SP800-
56A Set ED

targets.

Approved
beyond 2030

Non-compliant:
only NIST

concatenation
KDF permitted

ANSI X9.63
SEC 1

Unified Model key
confirmation (with
HMAC-SHA-384-

192 and
LVCONCAT)

Conforms to ISO
11770-3

Partially
conforms but not

interoperable;
Meets SP800-
56A Set ED

targets

No relevant
guidance

Meets
“Augmented”
requirements

Partially conforms
to ANSI X9.63;

standard is
unclear on key
confirmation for

C(1e, 2s)

Comments:

• [ISO/TR 14742] and [NIST SP800-131A] are ‘super-standards’ that recommend – with

reference to other standards – cryptographic algorithms and key lengths that are

appropriate for the foreseeable future.

o [ISO/TR 14742] provides recommendations for the financial services industry.

The body of the standard does not cover key establishment algorithms, but

Annex A cites key establishment mechanisms in [ISO 11770-3]. The

standard does not cover authenticated encryption modes of operation.

o [NIST SP800-131A] specifies NIST Approved algorithms that may be

implemented in a [FIPS PUB 140-2] certified HSM, and indicates the permitted

periods of use for these algorithms and associated key lengths. The

standard does not recommend ECC curves or cover key confirmation in key

agreement algorithms, but does approve the schemes in [NIST SP800-56A],

and that standard in turn recommends the curves in [FIPS PUB 186-3].

• An algorithm is fully aligned with the cited standard(s) unless otherwise indicated.

Full alignment includes security equivalence and interoperability.

• An algorithm may conform to a standard without being fully interoperable. This

usually occurs when this specification has a higher security target than the standard

(as with NIST SP800-152) or the standard specifies that formatting of input fields is

application specific (as with KDFs and key confirmation).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 66 OF 70

21 Appendix F – Summary of functions (informative)

A reference list of functions defined elsewhere in this document:

• BCD(Decimal String) → Octet String | Error

• BASE16(Octet String) → Hexadecimal String

• BASE16-DECODE(Hexadecimal String) → Octet String | Error

• Integer-to-Octet-String(Integer, MaxInteger) → Octet String | Error

• Octet-String-to-Integer(Octet String, MaxInteger) → Integer | Error

• Field-Element-to-Octet-StringDomain(Field Element) → Octet String | Error

• Octet-String-to-Field-ElementDomain(Octet String) → Field Element | Error

• Point-to-Octet-StringDomain(Point) → Octet String | Error

• Octet-String-to-PointDomain(Octet String) → (xP,yP) not necessarily a valid Point |

Error

• CRC16-MODBUS(Octet String) → 16-bit Big Endian integer

• LVCONCAT(I1, I2, …, In), Ii an Octet String, OctetLen(Ii) ≤ 255, n ≤ 255 → Octet

String | Error

• DFCONCAT(DELIM, I1, I2, …, In), DELIM 1P, Ii Printable → Printable ASCII String |

Error

• DFPARSE(DELIM, Octet String) → O1, O2, …, On, Oi Printable | Error

• BUILD-RECORD(rectype, delim, n, I1, I2, …, In), rectype IDENT, Ii Printable

→ Printable ASCII String | Error

• PARSE-RECORD(rectype, delim, n, Octet String), rectype IDENT,

→ O1, O2, …, On, Oi Printable | Error

• AES-192-CCMENC(Key, Nonce, Additional, Plaintext) → Ciphertext | Error; all Octet

String

• AES-192-CCMDEC(Key, Nonce, Additional, Ciphertext) → Plaintext | Error; all Octet

String

• SHA-384(Octet String) → Digest (Octet String)

• HMAC-SHA-384-192(Key, Text) → MAC; all Octet String

• KDF-X963-SHA-384(SharedSecret, SharedInfo, keydatalen) → Key Material (Octet

String)

• ECC-CDHP-384(dA in [1,n-1], QB a Point) → SharedSecret (Octet String)

• ECDSA-SIGNP-384,SHA-384(dA in [1, n-1], M an Octet String) → (r, s) both in [1, n-1] |

Error

• ECDSA-VERIFYP-384,SHA-384(QB a Point, M an Octet String, (r,s) a Signature) →

“valid” | “invalid” | Error

• GENERATE-KEY() → ECC Key Pair (dA in [1,n-1], QA a Point)

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 67 OF 70

• VALIDATE-KEY(QB a Point) → TRUE | Error

• CAST-128ENC(Key, Plaintext) → Ciphertext; all Octet String

• CAST-128DEC(Key, Ciphertext) → Plaintext; all Octet String

• MISTY1ENC(Key, Plaintext) → Ciphertext; all Octet String

• MISTY1DEC(Key, Ciphertext) → Plaintext; all Octet String

• HMAC-DKGA(VK, SGC, KT, KRN, MeterPAN, EA, TI) → Key

• KDF108-Feedback-HMAC-SHA-384(DerivationKey, OtherInfo, keydatalen) → Key

Material

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 68 OF 70

22 Appendix G – Summary of required Codes of Practice

and Registries (informative)

The STSA SHOULD provide Codes of Practice for:

• The security requirements for an SM (see section 9.1).

• The security requirements for a KMC HSM (see section 10.1).

• The requirements for approving SM hardware and firmware (see section 9.1).

The STSA SHOULD provide registry services for:

• Manufacturer names (see section 8).

• KMC names (see section 10.2).

• Approved HWIDs (see section 10.2).

• Approved FWIDs (see section 10.2).

KMC standards to be developed by the STSA SHALL include:

• A procedure for SM Manufacturers to publish their public key certificates to KMCs

in a trusted manner (section 8).

• A procedure for KMCs to publish their public keys to SM Operators in a trusted

manner (section 10.3).

• Procedures or procedural requirements to handle the compromise of KMC keys

(dKMC, SMK) or of Vending Keys (section 14.3.2).

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 69 OF 70

23 Appendix H – Implementation guidance (informative)

This section provides miscellaneous guidance for implementing this standard.

• The ASCII character ‘+’ (x’2B) is suggested as a field delimiter when

implementations must concatenate fields (comprising data types or structures

defined in this standard) as a consequence of implementation. The ‘+’ character is

safe for many printable encodings and in URLs; other characters may be less safe

or may conflict with the use of delimiters in this standard.

STS600-4-2 EDITION 1.3 , 2021

COPYRIGHT STS ASSOCIATION PAGE 70 OF 70

24 Appendix I - Key Agreement Scheme - worked example

(informative)

The key agreement scheme between HSM and KMS is complex. A full worked example

using static test vectors is available for manufacturers of HSM devices as a reference for

implementation of the Key Agreement Scheme specified in this document.

This worked example may be found in the STS600-9-1 document. Tests using ephemeral

data may only be done using the STSA test KMS.

